(18.210.12.229) 您好!臺灣時間:2021/03/01 06:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林泰源
研究生(外文):Tai-Yuan,Lin
論文名稱:氮化鎵系列半導體的光學和電學性質與矽鍺/矽異質結構半導體的磁量子傳輸之研究
論文名稱(外文):Optical and electrical properties of GaN-based semiconductors and quantum magneto-transport in p-SiGe/Si heterostructures
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang,Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:17
中文關鍵詞:半導體氮化鎵氮化銦鎵氮化鋁鎵矽鍺/矽異質結構二維電子氣磁量子傳輸
外文關鍵詞:GaNInGaNAlGaNSiGe/Siheterostructuretwo-dimensional electron gasmagnetotransport
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究氮化鎵系列半導體的光學與電學性質以及矽鍺合金半導體的磁量子傳輸性質。研究樣品包括氮化鎵與氮化銦鎵的磊晶層、氮化鎵/氮化鋁鎵異質結構、氮化銦鎵/氮化鎵多重量子井結構和矽鍺/矽異質結構。內容共分成五個部份:
(1) n型氮化鎵的磊晶層中光電導之光致猝滅現象:
我們藉由半導體禁帶中缺陷能級的光吸收作用增加價帶中的電洞而導致更多電子由傳導帶躍遷至價帶的效應,研究無摻雜與n型摻雜氮化鎵磊晶層禁帶中侷域態缺陷能級的性質。由光電導之光致猝滅效應的量測,得到一以1.26 eV為中心位置的缺陷能譜。根據此一能譜,我們研究於不同的溫度,光電導在缺陷能級開始與停止光吸收作用的狀態下隨時間的變化。實驗發現光電導隨時間的變化呈現半穩態的行為。實驗結果顯示,光電導光致猝滅現象的來源與造成氮化鎵磊晶層中持續性光電導現象以及黃色光致激發螢光的缺陷有關;這些缺陷具有多種的帶電結構且其對光電導的猝滅效應隨著Se(硒)摻雜濃度的增加而增大。我們認為光電導光致猝滅現象可歸因於氮原子錯位或者鎵原子空位缺陷。
(2) 氮化銦鎵磊晶層中的合金勢漲落效應:
我們由氮化銦鎵磊晶層中光致激發螢光和光電導量測結果,發現在氮化銦鎵磊晶層中具有相當大的光致激發螢光的Stokes位移現象,此位移現象隨銦的含量降低而降低。我們並且首先觀察到無摻雜氮化銦鎵磊晶層中的持續性光電導現象。此外,光致激發螢光峰值及螢光強度呈現出一些反常的行為:螢光峰值隨著溫度升高而作反S型的變化;螢光積分強度呈現與非晶系半導體和無序超晶格半導體中類似的溫度變化;螢光峰值能量隨著激發光強度的增強而發生藍移。所有量測的結果均顯示在氮化銦鎵磊晶層中存在著組成成份漲落的效應,並且可由其相關的合金勢漲落效應加以解釋。我們認為在以氮化銦鎵為作用層的樣品中,被廣為觀察到的侷域激子螢光是由這兩個相關的效應所造成的。
(3) 氮化鎵/氮化銦鎵多重量子井的光學性質與持續性光電導效應:
我們對氮化鎵/氮化銦鎵多重量子井進行光電性質的量測。由針對持續性光電導的衰減動力學所做的量測,得到銦(In)組成成份漲落所引起的侷域能級的大小。藉由吸收與光致激發螢光光譜,我們發現在無摻雜氮化鎵/氮化銦鎵多重量子井中,同時存在由應變壓電電場所引起的量子Stark約束效應,以及合金勢漲落效應。這兩個效應均被發現與氮化銦鎵應變層的光致激發螢光Stokes位移現象有關。我們指出應變壓電電場與合金勢漲落效應,對於以氮化銦鎵為作用層的樣品的光學性質有重大的影響。因此,在設計與製備III族氮化物元件時,必須同時將這兩個效應都列入考慮。
(4) 氮化鎵/氮化鋁鎵異質結構中的二維電子氣與持續性光電導效應:
我們量測了氮化鎵/氮化鋁鎵異質結構的光學和電學性質。根據改變所施加的磁場與電子所在平面的角度,而引起的電阻率的振盪(即所謂的Shubnikov-de Hass效應),確認了樣品當中存在二維電子氣。由不同溫度的電阻率振盪的變化,獲得的二維電子氣的有效質量為 (0.24±0.02) m0,此結果與迴旋共振所獲得的相當一致,但是較氮化鎵薄膜的理論與實驗值為大。我們認為此有效質量的增大現象是由非拋物型能帶效應與電子波函數勢壘穿隧效應所造成。另外一方面,在此一異質結構中亦存在持續性光電導效應。由溫度相關的變化,我們認為氮化鎵/氮化鋁鎵異質結構中產生持續性光電導的機制應該和在氮化鎵薄膜中的不同,我們對此提出了一個模型加以解釋。
(5) p型矽鍺/矽異質結構中之反常量子Hall態相變現象:
我們在p型矽鍺/矽異質結構的低溫磁量子傳輸量測中,發現樣品由於外加的高磁場,產生了 整數量子Hall態(填充因子,ν≧1) - Hall絕緣態 - 整數量子Hall態(ν=1) 的相變現象。其中,發生於樣品中以ν = 1.5 為中心位置的Hall絕緣態,與由Kivelson等人提出的全域相圖的預測並不相同。兩個相變的臨界點,具有不同的標度性質與普適現象。我們指出,這些反常的量子Hall態相變現象,可歸因於p型矽鍺合金半導體在強磁場中特殊的能級分布。
This thesis concerns with the studies on the optical and electrical properties of GaN-based semiconductors and the magnetic-field induced phase transition in the p-SiGe/Si heterostructures. Photoluminescence, photoluminescence excitation, photoconductivity, and magneto-transport measurements are carried out to study the physical properties of the GaN-based semiconductors, including GaN epifilms, InxGa1-xN epiflims, InxGa1-xN/GaN multiquantum wells and AlxGa1-xN/GaN heterostructures. On the other hand, the quantum phase transitions in p-SiGe/Si heterostructures are carefully analyzed with the results of the magnet-transport measurements using several low temperature techniques. These results are presented in the following parts:
1. Optical quenching of the photoconductivity in n-type GaN:
Results of optical quenching of photoconductivity measurements in undoped n-type and Se-doped GaN epitaxial thin films are presented. The spectral distribution of quenching phenomena shows a broad band centered around 1.26 eV. Transient changes in photoconductivity on application or removal of the quenching radiation are shown to exhibit a metastable behavior. The results reveal that the origin of the optical quenching phenomena is closely related to the defects corresponding to the persistent photoconductivity(PPC) effects and the yellow luminescence band observed in most n-type GaN. In additions, this result indicates that these defects can have multiple charge states. It is found that the quenching ratio increases with increasing Se doping concentration. We point out that the origin of the defects that are responsible for the optical quenching can be attributed to nitrogen antisite and/ or Ga vacancy.
2. Effects of alloy potential fluctuations in InGaN epitaxial films:
Results of photoluminescence and photoconductivity measurements in InxGa1-xN epitaxial films are presented. The photoluminescence peak energy and intensity show several anomalous behaviors. The peak energy changes with temperature exhibiting inverted S shape dependence, where it decreases, then increases with increasing temperature in the range 40-100 K, and finallly decreases with increasing temperature. The intensity shows a temperature dependence similar to that of amorphous semiconductors and disordered superlattices. A blue shift of the photoluminescence energy with increasing excitation intensity is observed. A large Stokes shift between the photoluminescence peak position and the band edge transition energy is found; it decreases with decreasing indium content. A persistent photoconductivity effect has been detected up to room temperature with a stretched-exponential function for its decay rate. All these observations can be explained in a consistent way by alloy potential fluctuations, and these clearly indicate the existence of compositional fluctuations. These two related effects thus appear to constitute the mechanism for the widely observed localized excitons in InGaN-based devices.
3. Optical characteristics and persistent photoconductivity of undoped InGaN/GaN multiquantum wells:
We have investigated the decay kinetics of persistent photoconductivity effect in the undoped InGaN/GaN MQWs and a localization depth of the localized energy states caused by In composition fluctuation in the InGaN well layers is determined. Compared with the results of complementary absorption and photoluminescence measurements, it is found that the quantum confined Stark effect due to piezoelectric field and alloy potential fluctuations both exist in the InGaN/GaN MQWs. And these two effects are responsible for the photoluminescence Stokes-like shift in the InGaN well layers. We point out that the piezoelectric field and the alloy potential fluctuations can significantly influence the optical properties of the InGaN-based materials and should be taken into account for the design and fabrication of group-III nitride based heterointerface devices.
4. Two-dimensional electron gas and persistent photoconductivity in AlGaN/GaN heterostructure:
We present results of electrical and optical measurements in AlGaN/GaN heterostructure. The presence of a two-dimensional electron gas(2DEG) at the high quality AlGaN/GaN heterointerface is confirmed by Shubnikov-de Haas measurement, which shows well resolved magnetoresistance oscillations starting in field below three Tesla at 1.3 K. From the temperature dependence of the oscillation amplitude, the obtained effective mass (0.24±0.02) m0 is in excellent agreement with the value of cyclotron resonance measurements in 2D systems, but larger than the values of theoretical and experimental results in GaN bulk films. We point out that the effective mass enhancement in 2D systems is due to the effects of band nonparabolicity and wavefunction penetration into the barrier material. The results of photoconductivity measurements reveal that persistent photoconductivity(PPC) does exist in the AlGaN/GaN heterostructure, and that the PPC behavior of AlGaN/GaN heterojunction is quite different from that of the GaN epitaxial thin films. A possible mechanism is presented to interpret the observed PPC effect.
5. Magnetic-field induced anomalous phase transitions in p-SiGe/Si heterostructures:
We present the low-temperature magneto-transport measurements on a two-dimensional hole gas in the p-type modulation doped SiGe alloy confined by Si barrier. We observe a magnetic-field-induced transition which occurs at high magnetic fields from an integer quantum Hall phase to a Hall insulator phase and finally reenters to a υ = 1 integer quantum Hall phase. This Hall insulator is centered at υ = 1.5, which is unanticipated by the global phase diagram. Scaling analysis and universal phenomena are found to be different at the two transition points. These results are attributed to the unusual energy level scheme in p-SiGe.
Cover
Abstract(in Chinese)
Abstract(in English)
Acknowledgments
Publication
List of figures
Contents
1.
1.1 Assessment of the properties of gallium nitride and related materials
1.2 Studies on the magnetic-field induced phase transitions in p-SiGe/Si heterostrucures
1.3 Refernces
2.
2.1 Introduction
2.2 Background
2.3 Experimental details
2.4 Results and discussion
2.5 Summary
2.6 References
3.
3.1 Introduction
3.2 Background
3.3 Experimental details
3.4 Results and discussion
3.5 Summary
3.6 References
4.
4.1 Introduction
4.2 Background
4.3 Experimental details
4.4 Results an discussion
4.5 Summary
4.6 References
5.
5.1 Introduction
5.2 Background
5.3 Experimental details
5.4 Results and discussion
5.5 Summary
5.6 References
6.
6.1 Introduction
6.2 Backround
6.3 Experimental details
6.4 Results and discussion
6.5 Summary
6.6 References
7.
A. Referred Papers:
1. T. Y. Lin, M. S. Tsai, Y. F. Chen, and F. F. Fang, '''' Magnetic-field-induced anomalous phase transition in p-type Si/SiGe heterojuctions '''', J. Phys.: Condens. Matter 10, 9691(1998).
2. T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, " Two-dimensional electron gas and persistent photoconductivity in AlxGa1-xN/GaN heterostructures ", Phys. Rev. B 58, 13793(1998).
3. T. Y. Lin, J. C. Fan, and Y. F. Chen, '''' Effects of alloy potential fluctuations in InGaN epitaxial films'''', Semicond. Sci. Technol. 14, 406(1999)
4. H. Y. Wang, S. C. Huang, T. Y. Yan, J. R. Gong, T. Y. Lin, and Y. F. Chen, ''''Growth and characterization of GaN films on (0001) sapphire substrates by alternate supply of trimethylgallium and NH3 ", Mater. Sci. Eng. B 57, 218(1999)
5. T. Y. Lin, and Y. F. Chen, " Optical quenching of the photoconductivity in n-type GaN", submitted to J. Appl. Phys.
6. T. Y. Lin, and Y. F. Chen, " Optical characteristics and persistent photoconductivity of undoped InGaN/GaN multiquantum wells ", submitted to Appl. Phys. Lett.
7. W. K. Hung, M. Y. Chern, J. C. Fan, T. Y. Lin, and Y. F. Chen, " Pulsed laser deposition of GaNAs on GaAs", Appl. Phys. Lett., accepted for publication.
8. H. C. Yang, T. Y. Lin, and Y. F. Chen, " Nature of 2.8 eV photoluminescence band in Si doped GaN " submitted to Appl. Phys. Lett.
9. H. C. Yang, T. Y. Lin, M. Y. Huang, and Y. F. Chen, " Optical properties of Si-doped GaN films ", submitted to J. Appl. Phys.
B. Presentation at professional conference:
1. M. S. Tsai, T. Y. Lin, C. F. Huang, Y. F. Chen, C. F. Lin, G. C. Chi, and F. F. Fang, ''''The transport property of 2DEG in GaN/AlGaN heterostructures'''' Photonics, Hsin-Chu, TAIWAN, 1996.
2. T. Y. Lin, M. S. Tsai, Y. F. Chen, and F. F. Fang, ''''Magnetic field induced metal-insulator-metal transition in p-type Si/SiGe heterojuctions'''', Annual meeting of Chinese Physical Society, 1997.
3. M. S. Tsai, T. Y. Lin, Y. F. Chen, and F. F. Fang, ''''The transport property of 2DEG in GaN/AlGaN heterostructures'''' Annual meeting of Chinese Physical Society, 1997.
4. T. Y. Lin, M. S .Tsai, Y. F. Chen and F. F. Fang, ''''Magnetic field induced anomalous phase transition in p-type Si/SiGe heterostructures'''', The Second Joint Meeting of the World-Wide Chinese Physicists, Taipei, TAIWAN, 1997
5. H. Y. Wang, S. C. Huang, J. R. Gong, T. Y. Lin, Y. F. Chen, C. I. Chiang and S. L. Tu, ''''Growth of GaN films on (0001) sapphire substrates by atomic layer epitaxy using hydrogen carrier gas'''', Electronic devices and materials symposium, Chun-Li, TAIWAN, 1997.
6. T. Y. Lin, J. C. Fan and Y. F. Chen, '''' Alloy potential fluctuationins in InGaN'''' Annual meeting of Chinese Physical Society, 1998.
7. J. S. Wang, H. H. Lin, T. Y. Lin, Y. F. Chen, W. K. Hung and M. Y. Chern" Epitaxial growth of the GaN film on (0001) sapphire by RF atomic nitrogen plasma assisted gas source molecular beam epitaxy", 1998 International Electron Devices and Material Symposia, 20-23 , TAIWAN, 1998
8. S. L. Hsieh, M. F. Yeh, J. R. Gong, T. Y. Lin, Y. F. Chen, C. I. Chiang, C. H. Lin, and H. Chang, " Growth of AlGaN films on (0001) sapphire substrates by atomic layer epitaxy ", 1998 International Electron Devices and Material Symposia, 20-23 , TAIWAN, 1998
9. J. R. Gong, H. Y. Wang, S. C. Huang, T. Y. Yan, T. Y. Lin, Y. F. Chen, C. I. Chiang, C. H. Lin, S. L. Tu, and H. Chang, " Growth and characterization of GaN films on (0001) and (11 0) sapphire substrates, 1998 International Symposium on Surface and Thin Film Science, Hhin-Chu, TAIWAN, 1998
10. T. Y. Lin and Y. F. Chen, " Optical quenching of the photoconductivity in n-type GaN", Annual meeting of Chinese Physical Society, 1999
11. T. Y. Lin and Y. F. Chen, " Optical quenching of the photoconductivity in n-type GaN", 1999 Centennial Meeting of the American Physical Society, Atlanta, USA, 1999.
References for chapter 1
1. J. I. Pankove, E. A. Miller, J. E. Berkeyheiser, RCA Rev. 32, 383(1971)
2. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda. Appl. Phys. Lett. 48, 353(1986)
3. S. Nakamura, Jpn. J. Appl. Phys. 30, L1705(1991)
4. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth 98, 209(1989)
5. S. Nakamura, N. Iwasa, M. Seonoh, T. Mukai, Jpn. J. Appl. Phys. 31, 1258(1992)
6. S. Nakamura, T. Mukai, M. Senoh, Jpn. J. Appl. Phys. 30, L1998(1991); S. Nakamura, M. Seonoh, N. Iwasa, S. Nagahama, ibid. 34, L797(1995)
7. S. D. Lester, F. A. Ponce, M. G. Craford, and D.A. Steigerwald, Appl. Phys. Lett. 66, 1249(1995)
8. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237(1992)
9. J. W. Orton and C. T. Foxon, Rep. Prog. Phys. 61, 1(1998)
10. H. M. Chen, Master thesis: The Studies of Optical and Electrical Properties of GaN-Based Semiconductors, NTU, 1997.
11. T. Y. Lin, J. C. Fan and Y. F. Chen, Semicond. Sci. Technol. 14, 406(1999)
12. T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, Phys. Rev. B 58, 13793(1998)
13. S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson, and D. L. Harame, IEEE Trans. Electron. Devices, ED-36, 2043(1989)
14. J. Baslev, Phys. Rev. 143, 636(1966)
15. K. von. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494(1980)
16. F. F. Fang, P. J. Wang, B. S. Meyerson, J. J. Nocera and K. E.Ismail, Surf. Sci, 263, 175 (1992); F. F. Fang, R. B. Dunford, R.N. Newbury, R. P. Skougarevsky, R. G. Clark, J. O. Chu and B. S. Meyerson, in High magnetic Fields in the Physics of Semiconductors, ed. D.Himan ( Singapore: World Scientific 1995) p.620;
17. S. I. Dorozhkin, C. J. Emeleus, T. E. Whall, and G. Landwehr, Phys.Rev. B, 52, R11638 (1995)
18. P. T. Coleridge, A. S. Sachrajda, P. Zawadzki, R. L. Williams, and H.Lafontaine, Solid State Commun. 10, 755 (1997)
19. T.Y. Lin, M.S. Tsai, Y. F. Chen, and F. F. Fang, J. Phys.: Condens. Matter 10, 9691(1998)
References for chapter 2
1. S. N. Mohammad, A. A. Salvador, and H. Morkoc, Proceedings of IEEE 83, 1305(1995)
2. F. A. Ponce and D. P. Bour, Nature 386, 351(1997)
3. J. W. Orton and C. T. Foxon, Rep. Prog. Phys. 61, 1(1998)
4. T. Ogino and M. Aoki, Jpn. J. Appl. Phys. 19, 2395(1980)
5. E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, J. A. Freitas, Jr. M. Asif. Khan, D. T. Olson, J. N. Kuznia, and D. K. Wickenden, Phys. Rev. B 51, 13326(1995)
6. T. Suski, P. Perlin, H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, M. Bockowski, S. Porowski, and T. D. Moustakas, Appl. Phys. Lett. 67, 2188(1995)
7. E. Calleja, F. J. Sanchez, D. Basak, M. A. Sanchez-Garcia, E. Munoz, I. Izpura, F. Calle, J. M. G. Tijero, J. L. Sanchez-Rojas, B. Beaumont, P. Lorenzini, and P. Gibart, Phys. Rev. B 55, 4689(1997)
8. C. Johnson, J. Y. Lin, H. X. Jiang, Jr. M. Asif. Khan, and C. J. Sun, Appl. Phys. Lett. 68, 1808(1996)
9. W. Rieger, R. Dimitrov, D. Brunner, E. Rohrer, O. Ambacher, and M. Stutzmann, Phys. Rev. B 54, 17596(1996)
10. C. H. Qiu and J. I. Pankove, Appl. Phys. Lett. 70, 1983(1997)
11. H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, J. Appl. Phys. 82, 899(1997)
12. C. V. Reddy, K. Balakrishnan, H. Okumura, and S. Yoshida, Appl. Phys. Lett. 73, 244(1998)
13. X. Zhang, P. Kung, A. Saxler, D. Walker, T. Wang, and M. Rageghi, Acta Phys. Pol. A 88, 601(1995)
14. G. C. Yi and B. W. Wessels, Appl. Phys. Lett. 69, 3028(1996)
15. D. M. Hofmann, D. Kovalev, G. Steude, B. K. Meyer, A Holfmann, L. Fckey, R. Heitz, T. Detchprom, H. Amano, and, I. Akasaki, Phys. Rev. B 52, 16702(1995)
16. H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, Phys. Rev. B 56, 6942(1997)
17. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. Denbaars and J. S. Speck, Appl, Phys. Lett. 68, 643(1996)
18. F. A. Ponce, D. Cherms, W. T. young and J. W. Steeds, Appl, Phys. Lett. 69, 770(1996)
19. A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, Appl, Phys. Lett. 71, 2334(1997)
20. S. Nakamura, Jpn. J. Appl. Phys. 36, L1059(1997)
21. D. C. Look and J. R. Sizelove, Phys. Rev. Lett. 82, 1237(1999)
22. S. Nakamura, Jpn. J. Appl. Phys. 36, L1568(1997)
23. C. G. Van de Walle and J. Neugebauer, Mat. Res. Soc. Symop. Proc. 449, 861(1997)
24. J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50, 8067(1994)
25. J. Neugebauer and C. G. Van de Walle, Proc. ICPS-22( World Scientific, Singapore, 1995).p.2327
26. B. C. Chung and M. gershenzon, J Appl. Phys. 72, 651(1992)
27. W. Gotz, N. M. Johnson, C, Chen, H. Liu, C. Kuo, and W. imler, Appl Phys. Lett. 68, 3114(1996)
28. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 31, 1258(1992)
29. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic and P. Scholotter, Appl. Phys. Lett. 72, 1326(1998)
30. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, and B. Santic, Phys. Rev. B 59 5561(1999)
31. S. J. Xu, G. Li, S. J. Chua, X. C. Wang and W. Wang, Appl. Phys. Lett. 72, 2451(1998)
32. J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503(1996)
33. T. Mattila, A. P. Seitsonen, and R. M. Nieminen, Phys. Rev. B 54, 1474(1996)
34. H. C. Yang, T. Y. Lin and Y. F. Chen, Submitted for publication (1999).
35. See, for example, reference 24 of this chaper.
36. P. Boguslawski and J. Bernholc, Acta Phys. Pol. A 90, 735(1996)
37. J. D. Guo, M. S. Feng, and F. M. Pan, Jpn. J. Appl. Phys. 34, 5510(1995)
38. C. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono, and J. I. Pankove, Appl. Phys. Lett. 66, 2712(1995)
39. F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, Appl. Phys. Lett. 69, 1202(1996)
40. D. C. Look, Z. Q. Fang, W. Kim. O. Aktas, A. Botchkarev, A. Salvador, and H. Morkoc, Appl. Phys. Lett. 68, 3775(1996)
41. G. D. Watkins, Mat. Sci. Forum 38-41, 39(1989)
42. M. Mizuta, M. Tachikawa, H. Kukimoto, and S. Minomura, Jpn. J. Appl. Phys. 24, L143(1985)
43. R. H. Bube, Photoelectronic Properties of Semiconductors ( Cambridge Univ. Press, 1992), Chap. 5.
44. D. J. Chadi and K. J. Chang, Ph
References for chapter 3
1. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Mat. Res. Soc. Symp. Proc. 499, 653 (1997).
2. Y. Narukawa, Y. Kawakami, M. Funato, Shiz. Fujita, Shig. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).
3. M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, M. Asif Khan, and Q. Chen, Appl. Phys. Lett. 69, 2837 (1996).
4. C. I. Harris, B. Monemar, H. Amano, and I. Akasaki, Appl. Phys. Lett. 67, 840 (1995).
5. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl, Phys. Lett. 69, 4188 (1996)
6. Y. Narukawa, Y. Kawakami, Shiz. Fujita, Shig. Fujita, and S. Nakamura, Phys. Rev. B , 55, R1938 (1997).
7. J. Singh and K. K. Bajaj, Appl. Phys. Lett. 48, 1077(1986)
8. P. Parayanthal and F. H. Pollak, Phys. Rev. Lett. 52, 1822(1984)
9. S. Lai and M. V. Klein, Phys. Rev. Lett. 44, 1087(1980)
10. K. Masu, E. Tokumitsu, M. Konagai, and K. Takahashi, J. Appl. Phys. 54, 5785(1983)
11. L. H. Chu, Y. F. Chen, D. C. Chang, and C. Y. Chang, J. Phys.: Condens. Matter. 7, 4525 (1995).
12. H. X. jiang and J. Y. Lin, Phys. Rev. Lett. 64, 2547(1990)
13. S. de Gironcoli and S. Baroni, Phys. Rev. Lett. 69, 1959(1992)
14. S. Nakamura and G. Fasol, The Blue Laser Diode, Springer-Verlag, 1997, p.143
15. K. Osamura, S. Naka and Y. Murakami, J. Appl. Phys. 46, 3432(1975)
16. T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano and I. Akasaki, Jpn. J. Appl. Phys. 36, L177(1997)
17. M. E. Lin, B. N. Sverdlov, S. Strite, H. Morkoc and A.E. Drakin, Electron. Lett. 29, 1759(1993)
18. S. N. Mohammand, A. A. Salvador and H. Morkoc, Proc. IEEE 83, 1306(1995)
19. Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, Appl. Phys. Lett. 72, 710(1998)
20. X. H. Wu, C. R. Blass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. Denbaars, J. S. Speck, and S. J. Rosner, Appl. Aphys. Lett. 72, 692(1998)
21. J. E. Northrup, L. T. Romano, and J. Neugebauer, Appl. Phys. Lett. 74, 2319(1999)
22. I. H. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701(1996)
23. M. K. Sheinkman and A. Ya. Shik, Sov. Phys. Semicond. 10, 128(1976)
24. J. Y. Lin and H. X. Jiang, Phys. Rev. B 40,10025(1989)
25. H. J. Stormer, R. Dingle, A. C. Gossard, W. W. Wiegmann and M. D. Sturge, Solid state Commun. 29,705(1974)
26. D. E. Theodorou, H. J. Queisser and E. Bauser, Appl. Phys. Lett. 41, 628(1982))
27. M. I. Nathan, Solid State Electron. 29,167(1986)
28. G. Yusa and H. Sasaki, Apll. Phys. Lett. 70, 345(1997)
29. H. J. Queisser and D. E. Theodorou, Phys. Rev. B, 32, 4027(1986)
30. H. J. Queisser, Phys. Rev. Lett. 54, 234(1985)
31. D. V. Lang and R. A. Logan, Phys. Rev. Lett. 39, 635(1977)
32. D. V. Lang, R. A. Logan and M. Jaros, Phys. Rev. B 19, 1015(1979)
33. R. Kubo, J. Phys. Soc. Jpn. 12, 570(1957)
34. R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393(1847)
35. J. C. Phillip, Rep. Prog. Phys. 59, 1133(1996)
36. G. Williams and D. C. Watts, trans. Farady. Soc. 66, 80(1970)
37. W. Van der Stricht, I. Moerman, P. Demeester, L. Considine, E. J. Thrush, and J. A. Crawley, MRS Internet J. Nitride Semicond. Res. 2, 16 (1997).
38. R. A. Street, T. M. Searle, and I. G. Augustein, Amorphous and Liquid Semiconductors, p.953, J. Stuke and W. Brenig, Eds., Taylor and Francis, London, U.K.,1974.
39. T. Yamamoto, M. Kasu, S. Noda, and A. Sasaki, J. Appl. Phys, 68, 5318 (1990).
40. C. G. Van de Walle, and R. M. Martin, Phys. Rev. B, 34, 5621 (1986).
41. S. M. Olshoorn, F. A. J. M. Driessen, A. P. A. M. Eijkelenboom, and L. J. Giling, J. Appl. Phys. 73, 7798 (1993).
42. Y. P. Varshni, Physica 34, 149 (1967)
43. W. Shan, B. D. Little, J. J. Song, Z. C. Feng, M. Schurman, and R. A. Stall, Appl. Phys. Lett. 69, 3315(1996)
44. P. M. Mooney, J. Appl. Phys. 67, R1 (1990).
45. H. X. Jiang, and J. Y. Lin, Phys. Rev. Lett. 57, 873 (1990).
46. J. Kakalios, R. A. Street, and W. B. Jackson, Phys. Rev. Lett. 59, 1037 (1987).
47. Y. F. Chen, S. F. Huang, and W.S. Chen, Phys. Rev. B 44, 12748 (1991).
48. M. Campos, J. A. Giacometti, and M. Silver, Appl. Phys. Lett. 34, 226 (1979).
49. W. B. Jackson, Phys. Rev. B 38, 3595 (1988).
50. R. S. Crandall, Phys. Rev. B 43, 4057 (1991)
References for chapter 4
1. S. N. Mohammad, A. A. Salvador and H. Morkoc, Proceedings of IEEE, 83, 1306(1995)
2. " GaN and Related Materials ", S. J. Pearton ed., Gordon and Breach Science Publishers, (1997)
3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, Appl. Phys. Lett. 72, 211(1998), ibid 72, 2014(1998)
4. For a review, see S. Chichibu, T. Soda, K. Wada and S. Nakamura, J. Vac. Sci. Technol. B 16, 2204(1998)
5. S. Nakamura, Science, 281, 956(1998)
6. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amono. and I. Akasaki, Jpn. J. Appl. Phys. 36, Pt.2, L382(1997)
7. T. Mukai, M. yamada and S. Nakamura, Jpn J. Appl. Phys. 37, Pt.2, L1358(1998)
8. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada and T. Mukai, Jpn. J. Appl. Phys. 34, Pt.2, L1332(1995)
9. T. Mukai, D. Morita and S. Makamura, J. Cryst. Growth. 189/190, 778(1998)
10. M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller and S. P. Denbaars, Appl. Phys. Lett. 72, 1066(1998)
11. T. Y. Lin, J. C. Fan and Y. F. Chen, Semicond. Sci. Technol. 14, 406(1999)
12. J. F. Nye, Physical Properties of crystals, Oxford Univ. Press, 1957, p.110
13. F. Bernardini, V. Fiorentini and D. Vanderbilt, Phys. Rev. Lett. 79, 3958(1997); ibid. Phys. Rev. B 56, R10024(1997))
14. T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amono. and I. Akasaki, Jpn. J. Appl. Phys. 36, Pt.2, L177(1997)
15. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano and I. Akasaki, Appl. Phys. Lett. 73, 1691(1998)
16. S. Chichibu, A. Abare, M. Minsky, S. Keller, S. Heischer, J. Bowers, E. Hu, V. Mishra, L. Coldren and S. DenBaars, Appl. Phys. Lett. 73, 2006(1998)
17. J. H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge univ. press, 1998, p259
18. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigmann, T. H. Wood and C. A. Burrus, Phys. Rev. B, 32, 1043(1985)
19. L. H. Chu, Y. F. Chen, D. C. Chang and C. Y. Chang, J. Phys.: Condens. Matter, 7, 4525(1995)
References for chapter 5
1. W. Knap, S. Contreras H. Alause, C. Skierbiszewski, J. Camassel, M. Dyakonov. J. L. Robert, J. Yang, Q. Chen, M. Asif Khan, M. L. Sadowski, S. Huant, F. H. Yang, M. Goiran, J, Leotin, and M. S. Shur, Appl. Phys. Lett. 70, 2123(1997)
2. Y. J. Wang, R. Kaplan, H. K. Ng, K. Doverspike, D. K. Gaskill, T. Ikedo, I. Akasaki, and H. Amono, J. Appl. Phys. 79, 8007(1996)
3. H. M. Chen, Y. F. Chen M. C. Lee, and M. S. Feng, Phys. Rev. B 56, 6942(1997)
4. C. H. Qiu, and J. I. Pankove, Appl. Phys, Lett. 70, 1983(1997)
5. F. F. Fang and P. J. Stiles, Phys. Rev. 174, 823(1968)
6. E.N. Adams and T. D. Holstein, J. Phys. Chem. Solids, 10, 254(1956)
7. V. Milanovie and D. Tjapkin, Physica B 114, 375(1982); ibid. 121,181(1983)
8. Z. S. Gribnikov, K. Hess, and G. A. Kosinovsky, J. Appl. Phys. 77, 1337(1995)
9. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures( Halsted, New York, 1988)
10. E. O. Kane, J. Phys. Chem. Solids, 1, 249(1957)
11. D. K. Ferry, Semiconductors( Macmillan Publishing Company, New York, 1991), p.457
12. T. Ando, J. Phys. Soc. Jpn. 51, 3893(1982)
13. U. Ekenberg, Phys. Rev. B, 40, 7714(1989)
14. J. Sumakeris, Z. Sitar, K. S. Ailey-Trent, K. L. More, and R. F.Davis, Thin Solid Films 225, 244(1993)
15. B. S. Meyerson, F. J. Himpsed, and K. J. Uram, Appl. Phys. Lett. 57, 1034(1990)
16. C. F. Lin, G. C. Chi, M. S. Feng, J. D. Guo, J. S. Tsang, and H. H.Hong, Appl. Phys. Lett. 68, 3758(1996)
17. M. A. Khan, Q. Chen, C. J. Sun, M. S. Shur, and B. Gelmont, Appl.Phys. Lett. 67, 1429(1995)
18. J. M. Redwing, M. A. Tischler, J. S. Flynn, S. Elhamri, M. Ahoujja,R. S. Newrock, and W. C. Mitchel, Appl. Phys. Lett. 69, 963(1996)
19. H. L. Stormer, A. C. Gossard, W. Wiegmann, and K. Baldwin, Appl.Phys. Lett. 39, 912(1981)
20. H. M. Chen, Master Thesis, National Taiwan University, Taipei, Taiwan(1997)
21. C. F. Lin, H. C. Cheng, J. A. Huang, M. S. Feng, J. D. Guo, and G. C. Chi, Appl. Phys. Lett. 70, 2583(1996)
22. A.E. Stephens, R. E. Miler, J. R. Sybert, and D. G. Seiler, Phys. Rev. B 18, 4394(1978)
23. T. Yang, S. Nakajima, and S. Sakai, Jpn. J. Appl. Phys. 34, 5912(1995)
24. M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B 52, 8132(1995)
25. J. P. Bergman, T. Lundstrom, B. Monemar, H. Amano, and I. Akasaki, Appl. Phys. Lett. 69, 3456(1996)
26. J. Baur, K. Meier, M. Kunzer, U. Kaufmann, and J. Schneider, Appl. Phys. Lett. 65, 2211(1994)
27. W. Knap, H. Alause, J. M. Bluet, J. Camassel, J. Young, M. Asif Khan, Q. Chen, S. Huant, and M. Shur, Solid State Commun. 99, 195(1996)
28. M. J. Yang, P. J. Lin-Chung, B. V. Shanabrook, J. R. Waterman, R. J. Wagner, and W. J. Moore, Phys. Rev. B 47, 1691(1993)
29. C. Wetzel, Al. L. Efros, A. Moll, B. K. Meyer, P. Omling, and P. Sobkowicz, Phys. Rev. B 45, 14052(1992)
30. Y. T. Dai, Y. F. Chen and I. Lo, Phys, Rev. B 55, 5235(1997)
31. L. H. Chu, Y. F. Chen, D. C. Chang, and C. Y. Chang, J. Phys.: Condens. Matter. 7, 4525 (1995).
32. H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, J. Appl. Phys. 82, 899(1997)
33. D. V. Lang, and R. A. Logan, Phys. Rev. Lett. 39, 635 (1977).
34. P. M. Mooney, J. Appl. Phys. 67, R1 (1990).
35. H. X. Jiang, and J. Y. Lin, Phys. Rev. Lett. 57, 873 (1990).
36. J. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, A. Votchkarev, and H. Morkoc, Appl. Phys. Lett. 69, 1474(1996)
References for chapter 6
1. R. People, J. C. Beam, D. V. Lang, A. M. Sergent, H. L. Stormer, K.W. Wecht, R. T. Lynch, and K. Baldwin, Appl. Phys. Lett. 45, 1231(1984)
2. B. S. Meyerson, F. K. LeGoues, T. N. Nguyen, and D. L. Harame, Appl.Phys. Lett. 50, 113 (1987); B. S. Meyerson, K. J. Uram, and F. K.LeGoues, Appl. Phys. Lett. 53, 2555 (1988)
3. F. F. Fang, P. J. Wang, B. S. Meyerson, J. J. Nocera and K. E.Ismail, Surf. Sci, 263, 175 (1992); F. F. Fang, R. B. Dunford, R.N. Newbury, R. P. Skougarevsky, R. G. Clark, J. O. Chu and B. S. Meyerson, in High magnetic Fields in the Physics of Semiconductors, ed. D.Himan ( Singapore: World Scientific 1995) p.620;
4. R. B. Dunford, R. N. Newbury, V. A. Stadnik, F. F. Fang, R. G. Clark,R. H. Mckenzie, R. P. Starrett, E. E. Mitchell, P. J. Wang, J. O. Chu, K. E.Ismail and B. S. Meyerson, Surf. Sci, 361/362, 550 (1996); R. B. Dunford, E. E. Mitchell, R. G. Clark, V. A. Stadnik, F. F. Fang, R. N.Newbury, R. H. Mckenzie, R. P. Starrett, P. J. Wang and B. S. Meyerson, J. Phys. Condens. Matter, 9, 1565 ( 1997)
5. S. I. Dorozhkin, C. J. Emeleus, T. E. Whall, and G. Landwehr, Phys. Rev. B, 52, R11638 (1995)
6. P. T. Coleridge, A. S. Sachrajda, P. Zawadzki, R. L. Williams, and H.Lafontaine, Solid State Commun. 10, 755 (1997)
7. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494(1980)
8. D. C. Tsui and A. C. Gossard, Appl. Phys. Lett. 38, 552(1981)
9. For a review, see R. E. Prange and S. M. Girvin, eds. (1990). The Quantum Hall Effect, 2d ed. Springer-Verlag, New York
10. R. B. Laughlin, Phys. Rev. B 23,5632(1981)
11. H. Aoki and T. Ando, Solid State Commun. 38, 1079(1981)
12. M. A. Paalanen, D.C. Tsui, and A. C. Gossard, Phys. Rev. B, 25,5566(1982)
13. H. P. Wei, D. C. Tsui and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988)
14. H. W. Jiang, C. E. Johnson, K. L.Wang and S. T. Hannahs, Phys. Rev.Lett. 71, 1439 (1993)
15. T. Wang, K. P. Clark, G. F. Spencer, A. M. Mack and W. P. Kirk, Phys. Rev. Lett. 72, 709 (1994)
16. R. J. F. Hughes, J. T. Nichools, J. E. F. Frost, E. H. Linfield, M. Pepper, C. J. B. Ford, D. A. Ritchie, G. A. C.Jones, E. Kogan and M. Kaveh.J. Phys. Condens. Matter 6, 4763 (1994)
17. D. Shahar, D. C. Tsui and J. E. Cunninghan, Phys. Rev. B 52, R14372 (1995)
18. S. H. Song, D. Shahar, D. C. Tsui, Y. H. Xie and Don Monroe, Phys.Rev. Lett. 78, 2200 (1997)
19. D. E. Khmelnitskii, Phys. Lett. 106A,182(1984)
20. A. M. M. Pruisken, Phys. Rev. Lett. 61,1297(1988)
21. S. Kivelson, D. H. Lee and S. C. Zhang, Phys. Rev. B 46,2223 (1992)
22. E. Abrahams, P. W. Anderson, D. C. Licciardello and T. V. Ramakishnan, Phys. Rev. Lett. 42, 673(1979)
23. B. Huckestein, Rev. Mod. Phys. 67, 357(1995)
24. S. L. Sondhi, S. M. Girvin, J.P. Carini and D. Shahar, Rev. Mod. Phys. 69, 315(1997)
25. G. C. Osbourn, J. Appl. Phys. 53, 1586(1982)
26. R. Braunstein, A. R. Moore and F. Herman, Phys. Rev. 109, 695(1958)
27. R. People, IEEE of Quantum Electronics, QE-22, 1696(1986)
28. E. Glaser, J. M. Trombeha, T. A. Kennedy, S. M. Prokes and O. J. Glembocki, Phys. Rev. Lett. 10, 1247(1990)
29. T. E. Whall, N. L. Mattey, A. D. Plews, P. J. Phillips, O. A.Mironov, R. J. Nicholas, and M. J. Kearney, Appl. Phys. Lett. 64, 357 (1994)
30. I.Glozman, C. E. Johnson, H. W. Jiang, Phys. Rev. Lett. 74, 594 (1995)
31. D. H. Lee, Z. Wang and S. Kivelson, Phys. Rev. Lett. 70,4130 (1993)
32. P. L. McEuen, A. Szafer, C. A. Richter, B. W. Alphenaar, J. K. Jain, A. D. Stone and R. G. Wheeler, Phys. Rev. Lett. 64, 2062 (1990)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔