(3.237.178.91) 您好!臺灣時間:2021/03/07 01:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許芳琪
研究生(外文):Fang-Chi Hsu
論文名稱:砷化銦/砷化鎵量子點的光學性質
論文名稱(外文):The Optical Properties of InAs/GaAs Quantum DOts
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:66
中文關鍵詞:量子點砷化銦/砷化鎵光致磷光效應能隙再歸一鬆弛機制選擇性光致磷光效應光致磷光激發
外文關鍵詞:Quantum DotsInAs/GaAsPhotoluminescenceBand-gap RenormalizationRelaxation MechanismsSelective PhotoluminescencePhotoluminescence Excitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在這篇論文中, 我們仔細的研究 InAs/GaAs量子點的光學性質。
I. 光致磷光效應的量測(PL)
光致磷光效應的量測實驗分為兩部分:
第一部份:變溫
由變溫實驗的量測,可發現載子會在大小不同的量子點間穿邃。且活化能隨著量子點增大而增大。此外,量測到的光譜峰值的變化不吻合Varshni law。
第二部份:改變入射光的強度
我們發現在入射光的強度夠強時,量子點的能隙會發生紅移的現象,這種反常的現象被歸因於多體效應所造成的"能隙再歸一"(BGR)之結果,可用不同態間的交換作用來描述此一現象。BGR的能量會隨著量子點的尺寸變小而變大。
II光致磷光激發(PLE)與選擇性的光致磷光效應的量測
我們呈現零維中載子的光學躍遷及鬆弛的機制。由選擇性光致磷光效應的量測中量測到多重聲子(光學支的聲子)的散發,隨著量子點層數增多,載子放射出的聲子數目增多,這暗示強大的垂直耦合作用會增加電聲子散射的機率。此外,由光致磷光激發實驗可知不論量子點層數多寡,載子可從wetting layer放出一個光學支聲子的能量而進入量子點內復合。

In this thesis, we present a detailed study of optical properties of InAs/GaAs quantum dots (QDs).
I. Photoluminescence measurement (PL)
Photoluminescence measurement has been carries out in two parts:
Part I: Temperature dependence
From the measurement of temperature dependence, we found that activated carriers tunneling through dots with different size do exist. And the activation energy increases with the increasing dot size. Besides, the peak energies of the PL spectra do not go along with Varshni law well.
Part II: Power dependence
We discover that the red-shift of bandgap occurs at high intensity pumping power. This unusual phenomenon is attributed to "band-gap renormalization"(BGR) caused by many-body effect. It can be described by exchanged-correlation interaction between different levels. The BGR energy increases with the decreasing of the dot size .
II. Photoluminescence excitation(PLE) & selective photoluminescence measurements
We present the nature of optical transitions(selection rules) as well as the nature of carrier relaxation mechanisms in 0D structures. Multiphonon (LO-phonon) emission has been investigated from selective photoluminescence measurement. The number of phonons mediating the carrier relaxation processes increases with the layers of the dots. It implies that strongly vertical coupling provides the high probability of electron-phonon scattering. Besides, carriers can relax into dots from wetting layer by emitting 1LO-phonon and the process is independent of the periods of dots.

List of Figures------------------------------------------xii
1 Preface----------------------------------------------------1
2 Sample preparation
2.1 Introduction to InAs/GaAs quantum dots (QDs)----------5
2.2 Sample preparation------------------------------------6
3 Techniques for optical measurement
3.1 Photoluminescence(PL)---------------------------------10 3.2 Photoluminescence excitation(PLE)---------------------10
3.3 Selective photoluminescence---------------------------11
4 Studies of InAs/GaAs QDs by PL measurement
4.1Introduction-------------------------------------------15
4.2 Theoretical background--------------------------------15
4.2.1 Band-gap renormalization-------------------------15
4.3 Experiment--------------------------------------------18
4.4 Results and discussions-------------------------------20
Part I Temperature dependence PL measurement----------20
Part II Power dependence PL measurement---------------23
4.5 Summary-----------------------------------------------42
5 Study of relaxation mechanisms in InAs/GaAs QDs
5.1 Introduction------------------------------------------45
5.2 Experiment--------------------------------------------45
5.3 Results and discussions-------------------------------49
5.4 Summary-----------------------------------------------61
6 Conclusion-------------------------------------------------64

Chapter 1
1. F. Houzoy, C. Guille, J. M. Moison, P. Henoc, and F. Barthe, J. Cryst. Growth 81, 67 (1987).
2. M. Tabuchi, S. Noda, and A. Sasaki, Science and Technology of Mesoscopic Structures, edited by S. Namba, C. Hamaguchi, and T. Ando (Spinger, Tokyo, 1992), P. 379.
3. M. Tsuchiyi, J. M. Gaines, R. H. Yan, R. J. Simes, P.O. Holtz, L. A. Coldren, and P. M. Petroff, Phys. Rev. Lett. 62, 466 (1989).
4. E. R. Glaser, B. R. Bennett, B. V. Shanabrook, and R. Magno, Appl. Phys. Lett. 68, 3614 (1996).
5. J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, Appl. Phys. Lett. 64, 196 (1994).
6. J. Y. Marzin, J. M. Gerard, A. Izrael, D. Barrier, and G. Bastard, Phys. Rev. Lett.73, 716 (1994).
7. D. Leonard, K. Pond, and P. M. Petroff, Phys. Rev. B 50, 11 687 (1994).
8. S. Ruvimov, P. Werner, K. Scheerschmidt, U. Gosde, H. Heydenreich, V. M. Ustinov, A. Yi. Egorov, P. S. Kopev, and Zh. I. Alferov, Phys. Rev. B51, 14 766 (1995).
9. J. Y. Marzin, J. M. Gerand, O. Cabori, B. Jusserand, and B. Sermage, II Nuovo Cimento 170, 1285 (1995).
10. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
11. H. Sakaki, Surf.Sci. 267, 623 (1992).
12. E. L. Ivchenko, A. V. Kavokn, V. P. Kochereshko, P. S. Kopev, and N. N. Lendentsov, Superlattices Microstruct. 12 317 (1992).
13. N. Yokoyama, S. Muto, K. Imamura, M. Takatsu, T. Mori, Y. Sugiyama, Y. Sakuma, H. Nakao, and T. Adachihara, Solid-State Electron. 40, 505 (1996).
14. H. Shoji, K. Mukai, N. Ohtsuka, M. Sugawara, T. Uchida, and H. Ishikawa, IEEE Photonics Technol. Lett. 7, 1385 (1995).
15. G. Tusa and H. Sakaki, Electron. Lett. 32, 491 (1996).
16. F. Daiminger, A. Schrmit, K. Pieger, F. Faller, and A. Forchel, Semicond. Sci. Technol, 9, 896 (1994).
17. See, for example, M. V. Klein, IEEE J. Quantum Electron. QE-22, 1760 (1986); H. Rucker, E. Molinari, and P. Lugli, Phys. Rev B. 44, 3463 (1991); P. A. Knipp and T. L. Reinecke, ibid.48, 5700 (1993), and references therein.
Chpater 2
1. S. Guha, A. Madhukar, and K. C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).
2. D. Leonard, K. Pond, and P. M. Petroff, Phys. Rev. B 50, 11687 (1994).
3. S. Fafard et al., Appl. Phys. Lett. 65, 1388 (1994); H. Drexler et al., Phys. Rev. Lett. 73, 2252 (1994).
4. J. -Y. Marzin et al., Phys. Rev. Lett. 73, 716(1994).
5. Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Phys. Rev. Lettr. 75, 2542 (1995).
Chpater 3
1. R. A. Stradling and P. C. Klipstein, Growth and Characterisation of Semiconductors.
2. S. Perkowitz, Optical Characterization of Semiconductors: Infrard, Raman, and Photoluminescence Spectroscopy.
3. R. J. Wiwsner, R. A. Street, and H. D. Wolf, Phys. Rev. Lett. 35, 1366 (1975).
4. E. Cohen, M. D. Sturge, N. D. Lipari, M. Altarelli, and A. Baldereschi, Phys. Rev. Lett. 35, 1591 (1975).
5. R. A. Street, and R. J. Wiesner, Phys. Rev. Lett. 34,1569 (1975).
Chpater 4
1. F. Houzoy, C. Guille, J. M. Moison, P. Henoc, and F. Barthe, J. Cryst. Growth 81, 67 (1987).
2. M. Tabuchi, S. Noda, and A. Sasaki,Science and Technology of mesoscopic Structures, edited by S. Namba, C. Hamaguchi, and T. Ando (Springer, Tokyo, 1992), P.379.
3. M. Tsuchiyi, J. M. Gaines, R. H. Yan, R. J. Simes, P. O. Holtz, L. A. Coldern, and P. M. Petroff, Phys. Rev. Lett. 62, 466 (1989).
4. E. R. Glaser, B. R. Bennett, B. V. Shanabrook, and R. Magno, Appl. Phys. Lett. 68, 3614 (1996).
5. J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, Appl. Phys. Lett. 64, 196 (1994).
6. S. Fafard, R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff, Superlattice Microstruct. 16, 303 (1994).
7. M. Grundmann, J. Christen, N. N. Ledentsov, J. Bohrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gosele, J. Heydenreich, V. M. Ustinov, A. Yu. Egorov, A. E. Zhucov, P. S. Kopev, and Zh. I. Afferov, Phys. Rev. Lett. 74, 4043 (1995).
8. A. Tackeuchi, Y. Nacata, S. Muto, and Y. Sugiama, Jpn. J. Appl. Phys. 34. L405 (1995).
9. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Jr, Proceedings of the 15th MBE conference, College Park, MD (1995).
10. Y. P. Varshni, Physica (Amsterdam) 34, 149 (1967).
11. Landolt-Bornstein, in Numerical Data and Functional Relationships in Science and Technology, New Series, III/17a, edited by O. Madelung (Springer, Berlin, 1982), P. 299.
12. E. W. Williams and H. B. Bebb, J. Phys. Chem. Solids 30, 1289 (1969).
13. G. Bacher, C. Hartmann, H. Schweizer, T. Held, G. Mahler, and H. Nichel, Phys. Rev. B 47, 9545 (1993).
14. J. D. Lambkin, D. J. Dunstan, K. P. Homewood. L. K. Howaed, and M. T. Emeny, Appl. Phys. Lett. 57, 1986 (1990).
15. Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, Phys. Rev.B 54, 11 528 (1996).
16. Z. L. Yuan, Z. Y. Xu, B. Z. Zheng, J. Z. Xu, S. S. Li, Weikun Ge. Yuqi Wang, Jiannong Wang, and L. L. Chang, Phys. Rev. B (to be published).
17. A. Tockeuchi, Y. Nacata, S. Muto, and Y. Sugiama, Jpn. J. Appl. Phys. 34. L405 (1995).
18. F. Daiminger, A. Schrmit, K. Pieger, F. Faller, and A. Forchel, Semicond. Sci. Technol, 9, 896 (1994).
19. Joo In Lee, Hyung Gyoo Lee, Eun-joo Shin, Sung Kyu Tu, Dongho Kim and Gukhyubg Ihm, Appl. Phys. Lett. 70, 2885 (1997).
20. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris. Jr., Phys. Rev. lett. 76, 952 (1996).
21. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Phys. Rev. Lett. 76, 952 (1996).
22. N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter, J. Bohrer, O. Schmidt, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, P. S. Kopev, S. V. Zaitsev, N. Yu. Gordeev, Zh. I. Alferov, A. I. Borovkov, S. S. Ruvimov, P. Werner, U. Gosele, and J. Heydenreich, Phys. Rev. B 54 8743 (1996).
23. M. I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and Madhukar, Appl. Phys. Lett. 73f, 1841 (1998).
24. D.A Kleinman, Phys. Rev. B 28, 871 (1983).
25. M. Combescot and P. Nozieres, J. Phys. CS, 2369 (1972).
26. J. Hubbard, Proc. R. Soc. London, Ser. A 243, 336 (1957).
27. Y. Kuramoto and H. Kamimura, J. Phys. Soc. Jpn. 37, 716 (1974).
28. T. M. Rice, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1977), Vol. 32, pp.1-86.
Chapter 5
1. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, Appl. Phys. Lett. 63, 3202 (1993).
2. D. Leonard, M. Krishnamurthy, S. Fafard, J. L. Merz, and P. M. Petroff, J. Vac. Sci. Technol. B 12, 1063 (1994).
3. D. Leonard, S. Fafard, G. Wang, Y. H. Zhang, J. L. Merz, and P. M. Petroff, J. Vac. Sci. Technol. B 12, 2516 (1994).
4. S. Fafard, D. Leonard, J. L. Merz and P. M. Petroff, Appl. Phys. Lett. 65, 1388 (1994).
5. G. Wang, S. Fafard, D. Leonard, J. E. Bowers, J. L. Merz, and P. M. Petroff, Appl. Phys. Lett. 64, 2815 (1994).
6. S. Fafard, R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff, Phys. Rev. B 50, 8086 (1994).
7. J. Y. Marzin, J. M. Gerald, A. Izrael, D. Barrier, and G. Bastard, Phys. Rev. Lett. 73,716 (1994).
8. R. Leon, S. Fafard, D. Leonard, P. M. Petroff, and J. L. Merz, Science 267, 1966 (1995).
9. M. Grundmann et al., Phys. Status Solidi 188, 249 (1995).
10. Older works also suggest such 0D confinement in similar structures, e.g.: L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, Appl. Phys. Lett. 47, 1099 (1985).
11. U. Bockelmann and G. Bastard, Appl. Phys. Lett. 55, 681 (1989) or U. Bockelmann, Phys. Rev. B 68, 17637 (1993).
12. H. Benisty, C. M. Sotomayor Terres, and C. Weisbuch, Phys. Rev. B 44, 10945 (1991).
13. Patterned single dots with shallow parabolic confinement have been reported to display excited-state emissions, K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Bohm, G. Trankle, and G. Weimann, Phys. Rev. B 69, 3216 (1994).
14. J. -Y. Marzin, J. -M. Gerard, A. Izrael, D. Barrier, and G. Bastard, Phys. Rev. Lett. 73, 716 (1994).
15. M. Grundmann, J. Christen, N. N. Ledentsov, U. Bohrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gosele, J. Heydenreich, V. H. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Aiferovm, Phys. Rev. Lett. 74, 4043 (1995).
16. Semiconductors-Group IV Elements and III-V Compounds. Edited by O. Madelung (Springer-Verlag, Berlin,11xx).
17. F. Alder, M. Geiger, A. Bauknecht, F. Scholz, and H. Schwerzer, Phys. Stat. Sol. (a) 164, 431 (1997).
18. R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, O. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, Appl. Phys. Lett. 68, 361 (1996)..
19. M. J. Steer, D. J. Mowbray, W. R. Tribe, M. S. Skolnick, M. D. Sturge, M. Mopkinson, A. G. Gullis, C. R. whitehouse, and R. Murrary, Phys. Rev. B 54, 17 738 (1996).
20. K. H. Schmidt, G. Medeiros-Ribeiro, M. Uestereich, P. M. Petroff, and G. H. Dohler, Phys. Rev. B 54 11346 (1996).
21. R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kopev and Zh. I. Alferov, Phys. Rev. B 56, 10435 (1997).
Chapter 6
1. F. Daiminger, A. Schrmit, K. Pieger, F. Faller, and A. Forchel, Semicond. Sci. Technol, 9, 896 (1994).
2. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris. Jr., Phys. Rev. lett. 76, 952 (1996).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔