跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 11:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳政欣
研究生(外文):ChengHsin Chen
論文名稱:多孔矽的光電性質
論文名稱(外文):Optical and Electrical Properties of Porous Silicon
指導教授:陳永芳陳永芳引用關係
指導教授(外文):YangFang Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:74
中文關鍵詞:多孔矽間接能隙半導體化學蝕刻
外文關鍵詞:porous siliconindirect bandgap semiconductorchemical etching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們研究了多孔矽光學與電學的性質。
首先,我們利用光電化學蝕刻方法所蝕刻出來的N型多孔矽去做光學方面的研究,我們利用光激螢光光譜與傅立葉轉換遠紅外光吸收光譜的量測來探討這一系列樣品的光學性質,也試著將量測出來的結果去與P型多孔矽做比較。從我們得到的結果中發現,在藍光範圍的發光機制是由於表面化合物所造成的,我們更由傅立葉轉換遠紅外光吸收光譜的量測結果中知道此化合物為Si-OH的鍵結。這樣的結果也從最近的文獻中理論的計算,而得到驗證此鍵結會在藍光波段發光。而從一些對光學性質穩定性的量測中也得到N型多孔矽的穩定性遠比P型多孔矽來的好,所以我們認為N型多孔矽比P型多孔矽更適合做為光電元件。
而從之前對N型多孔矽光學方面的研究,我們接著對其做電性方面的量測,從電流對電壓的量測中,我們發現其具有整流效應而且理想因子非常接近一,從計算的結果中得到多孔矽與矽的位能障值約為0.79電子伏特,而這個值會隨溫度的升高而增大,所以我們提出一個能帶結構的模型,定性上的解釋我們所看到的結果。
由於多孔矽的光激螢光會有衰減的現象,所以我們試著在蝕刻前,在矽晶片的表面鍍上一層金薄膜再去蝕刻,所得到的多孔矽具有很強且很穩定的光激螢光,因此我們可以說這樣蝕刻出來的多孔矽表面結構的穩定性比用一般方法所蝕刻出來的多孔矽還要好。我們也藉由傅立業轉換遠紅外光吸收光譜的量測結果去比較兩者之間的差異,成功的解釋為何鍍金薄膜所蝕刻出來的多孔矽會有較穩定的光學性質。

We present our work on optical and electrical properties of porous silicon. Firstly, we report on the optical studies of n-type porous silicon prepared by photo-assisted chemical etching. The optical properties of samples obtained under different conditions have been investigated by photoluminescence and Fourier transform infrared absorption measurements, and they are compared with that of p-type porous silicon. Our results clearly demonstrate that the blue emission in porous silicon originates from surface compounds. From the infrared absorption measurement, we point out that the surface compounds are Si-OH complexes. This conclusion is further supported by the recent calculation, which shows that Si-OH complexes can emit the photon energy in the range observed here. We show that the optical properties of n-type porous silicon are much more stable than that of p-type porous silicon. The result provides the evidence to support the fact that n-type porous silicon is a better candidate for the application in optoelectronics.
Secondly, the electrical conduction properties of metal/PS/n-type/metal have been investigated using current-voltage I(v) measurements. The characteristics for all devices show a rectifying behavior with ideality factor close to unity. A value of 0.79 eV for the barrier height is found to increase with rising temperature. A band model is proposed in order to explain the observed characteristics.
Finally, we report on porous silicon (PS) samples with strong and stable red photoluminescence (PL) prepared by chemical anodization used gold-plated substrate. We demostrate that the structural stability of Au-passivated porous silicon is much better than that of normal PS. It is also found that the PL intensity of Au-passivated PS can be enhanced by a factor of three when prepared under the same condition as that for normal PS. The infrared absorption spectra reveal that the photoluminescence stability can be attributed to the formation of stable Au-Si bonds on the surface of porous silicon.

1 Introduction 7
1.1 A new discovery 7
1.2 Motivation 8
1.3 Theory 8
2 Optical properties of n-type porous silicon obtained by photoelectrochemical etching 31
2.1 Introduction 31
2.2 Experiment 32
2.3 Results and Discussion 33
2.4 Conclusion 34
3 Transport mechanisms in n-type porous silicon obtained by photo-electrochemical etchin 42
3.1 Introduction 42
3.2 Experiment 43
3.3 Results and Discussion 43
3.4 Conclusion 46
4 Strong and Stable Visible Luminescence from Au-passivated Po-rous Silicon 55
4.1 Introduction 55
4.2 Experiment 56
4.3 Results and Discussion 56
4.4 Conclusion 59
5 Summary 66

Chapter 1
1. A. Uhlir, Bell Syst. Tech. J. 35, 333 (1956).
2. D. R. Turner, J. Electrochem. Soc. 105, 402 (1958).
3. L. T. Canham, Appl. Phys. Lett. 57 (10), 1046 (1990).
4. A. Bsiesy, J. C. Vail, F. Gaspard, R. Herino, M. Ligeon,
F. Muller, R. Romestein, A. Wasiela, A. Halimaoue and
G. Bomchil, Surf. Sci. 254, 195 (1991).
5. N. Koshida and H. Koyama, J. J. Appl. Phys. 30, L1221 (1991).
6. S. Gardelis, J. S. Rimmer, P. Dawson, B. Hamilton,
R. A. Kubiak, T. E. Whall and E. H. C. Parder,
Appl. Phys. Lett. 59, 2118 (1991).
7. A. G. Cullis, L. T. Canham and P. D. J. Calcott,
J. Appl. Phys. 82 (3), 909 (1997).
8. G. C. John and V. A. Singh, Phys. Rev. B50, 5329 (1994).
9. A. J. Read et al., Phys. Rev. Lett. 69, 1232 (1992).
10.M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber and
M. Cardona, Solid State Commun. 81, 307 (1992).
11.C. Tsai, K. Li, D. S. Kinosky, R. Qian, T. Tsu, J. T.
Irby, S. K. Banerjee, A. F. Tasch, J. C. Campbell,
B. K. Hance and J. M. White, Appl. Phys. Lett. 60,
1700 (1992).
12.S. M. Prokes, O. J. Glembocki, V. M. Bermudez, R. Kaplan,
L. E. Friedersdorf and P. C. Searson, Phys. Rev. B45,
13788 (1992).
13.D. J. Wolford, B. A. Scott, J. A. Reimeer and
J. A. Bradley, Physica 117B铦B, 9220 (1983).
14.F. Koch, V. Petrova-Koch, T. Muschik, A. Nokolov and
V. Gavrilenko, Mater. Res. Soc. Symp. Prop. 283, 197 (1993).
15.P. M. Fauchet, E. Ettedgui, A. Raisanen, L. J. Brillson,
F. Seiferth, S. K. Kurinec, Y. Gao, C. Peng and
L. Tsybeskov, Mater. Res. Soc. Symp. Prop. 298, 271 (1993).
16.G. G. Qin and Y. Q. Jia, Solid State Commun. 86 (9),
559 (1993).
17.Y. Kanemitsu, Phys. Report 263 (1) , (1995).
18.K. Takeda, in : Light Emission From Novel Silicon Materials.
19.K. Shiba, K. Sakamoto, S. Miyazaki and M. Hirose,
Japsan J. Appl. Phys. 32, 2772 (1993).
20.L. Tsybeskov and P. M. Fauchet,
Appl. Phys. Lett. 64 (15), 1983 (1994).
21.T. Murayama and S. Ohtane, Appl. Phys. Lett. 65, 1346 (1994).
22.S. M. Sze, Physics of semiconductor Devices,
(John Wiley & sons, New York 1981).
23.B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions
and Their Application, (Plenum Press, New York 1984).
24.E. H. Rhoderick and R. H. Williams, Metal-Semiconductor
Contacts, (Clarendon Press, Oxford 1988).
Chapter 2
1. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
2. R. T. Smith and S. D. Collins, J. Appl. Phys. 71, R1 (1993).
3. D. J. Lockwood, Solid State Commun. 92, 101 (1994).
4. L. Brus, J. Phys. Chem. 98, 3735 (1994).
5. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl.
Phys. 82, 909 (1997).
6. F. Koch, V. Petrova-Koch, T. Muschik, A. Nikolov, and V.
Gavrilenko, Mater. Res. Soc. Symp. Proc. 283, 197 (1993).
7. G. G. Qin and Y. Q. Jia, Solid State Commun. 86, 559 (1993).
8. I. M. Chang and Y. F. Chen, J. Appl. Phys. 82, 3514 (1997).
9. J. C. Fan, C. H. Chen, and Y. F. Chen, Appl. Phys. Lett. 72,
1605 (1998).
10.R. Memming and G. Schwandt, Sufr. Sci. 4, 109 (1966).
11.X. G. Zhang, J. Electrochem. Soc. 138, 3750 (1991).
12.J. L. Maurice, A. Riviere, A. Alapini, and C. Levy-Clement,
Appl. Phys. Lett. 66, 1665 (1995)
13.A. Starovoitov and S. Bayliss, Appl. Phys. Lett. 73, 1284
(1998)
14.J. Yan, S. Shih, K. H. Jung, D. L. Kwong, M. Kovar,
J. M. white, B. E. Gnade, and L. Magel, Appl. Phys. Lett.
64, 1374 (1994).
15. P. Gupta, A. C. Dillon, A. S. Bracker, and S. M. George,
Surf. Sci. 245, 360 (1991).
16. M. G. Jani, L. E. Halliburton, and E. E. Kohnke, J. Appl.
Phys. 54, 6321 (1983)
17. J. L. Gole and D. A. Dixon, Phys. Rev. B 37, 12002 (1998)
18. J. T. Lue, K. Y. Lo, S. K. Ma, C. L. Chen, and C. S. Chang,
Solid State Commun. 86, 593 (1993).
19. I. M. Chang, S. C. Pan, and Y. F. Chen, Phys. Rev. B 48,
8747 (1993)
Chapter 3
1. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
2. L. T. Canham, M. R. Houlton, W. Y. Leong, C. Pickering, and
J. M. Keen, J. Appl. Phys. 70, 422 (1991).
3. A. G. Gullis and L. T. Canham, Nature 353, 335 (1991).
4. N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
5. A. Halimaoui, C. Oules, and G. Bomchil, Appl. Phys. Lett.
59, 304 (1991).
6. S. Sawada, N. Hamada, and N. Ookubo, Phys. Rev. B 49, 5236
(1994).
7. F. Kue, X. Bao, and F. Yan, J. Appl. Phys. 81, 3175 (1997).
8. H. P. Maruska, F. Kamavar, and N. M. Kalkhoran,
Appl. Phys. Lett. 31, 1338 (1992).
9. P. Steiner, F. Kozlowski, and W. Lang, Appl. Phys. Lett. 62,
2700 (1993).
10.F. Kozlowski and W. Lang, J. Appl. Phys. 72, 5401 (1992).
11.J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, F. Muller,
R. Romestain, and R. M. Macfarlane, Phys. Rev. B 45,
171 (1992).
12.D. B. Dimitrov, Phys. Rev. B 51, 1562 (1995).
13.N. J. Pullsford, B. L. J. A. Rikken, Y. A. R. R. Kessener,
E. J. Lous, and A. H. J. Venhuizen, J. Appl. Phys. 75,
636 (1994).
14.A. K. Ray, M. F. Mabrook, A. V. Nabok, and S. Brown,
J. Appl. Phys. 84, 3232 (1998).
15.E. H. Rhoderick, Metal-Semiconductor Contacts,
2nd ed. (Clarendon, Oxford, 1978).
16.S. Chand, and J. Kumar, J. Apps. Phys. 288, 80 (1996).
Chapter 4
1. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
2. R. T. Smith and S. D. Collins, J. Appl. Phys. 71, R1 (1993).
3. D. J. Lockwood, Solid State Commun. 92, 101 (1994).
4. L. Brus, J. Phys. Chem. 98, 3735 (1994).
5. G. Cullis, L. T. Canham, and P. D. J. Calcott,
J. Appl. Phys. 82, 909 (1997).
6. A. G. Cullis and L. T. Canham, Nature (London) 353,335
(1991).
7. F. Buda, J. Kohanoff, and M. Parrinello,
Phys. Rev. Lett. 69, 1272 (1992).
8. J. P. Proot, C. Delerue, and G. Allan, Appl. Phys. Lett. 61,
1948 (1992).
9. I. M. Chang and Y. F. Chen, J. Appl. Phys. 82, 3514 (1997).
10.A. Loni, A. J. Simons, T. I. Cox, P. D. J. Calcott,
and L. T. Canham, Electro. Lett. 31, 1288 (1995).
11.L. Tsybeskov, S. P. Duttagupta, K. D. Hirschman, and
P. M. Fauchet, Appl. Phys. Lett. 68, 2058 (1996).
12.K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and
P. M. Fauchet, Nautre (London) 384, 338 (1996).
13.L. T. Canham, M. R. Houlton, W. Y. Leoun, C. Pickering, and
J. M. Keen, J. Appl. Phys. 70,422 (1991).
14.M. A. Tischler, R. T. Collins, J. H. Stathis, and
J. C. Tsang, Appl. Phys. Lett. 60, 639 (1992).
15.Y. H. Zhang, X. J. Li, L. Zheng, and Q. W. Chen,
Phys. Rev. Lett. 81, 1710 (1998).
16.M. H. Brodsky, M. Cardona, and J.J. Cuomo, Phys. Rev. B 16,
3556 (1997).
17.Y. Kato, T. Ito, and A. Hiraki, Jpn, J. Appl. Phys. 27,
L1406 (1988).
18.J. M. Rehm, G. L. McLendon, L. Tsybeskov, and P. M. Fauchet,
Appl. Phys. Lett. 66, 3669 (1995).
19.J. C. Fan, C. H. Chen, and Y. F. Chen, Appl. Phys. Lett. 72,
1605 (1998).
20.D. L. Staebler and C. R. Wronski, Appl. Phys. Lett. 31,292
(1977).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top