跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/25 23:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃永孟
研究生(外文):Yung Meng Huang
論文名稱:對矽(001)表面因應力影響而產生高低起伏變化的研究
論文名稱(外文):Strain-Induced Morphological Transformation on the Si (001) Surface
指導教授:張嘉升鄭天佐鄭天佐引用關係
指導教授(外文):Jason, Chia-Seng ChangTien T. Tsong
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:71
中文關鍵詞:應力掃描穿隧顯微鏡001) - 2X1重構缺陷台階
外文關鍵詞:strainSTM or scanning tunneling microscopySi (001) - 2X1reconstructiondimer vacancy line or MDLstepAg/Si (001)Cu/Si (001)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文由三個主題所組成。第一個部份是研究矽(001)表面因不同方向的外加應力所產生高低起伏變化的情形;第二部份是研究因蒸鍍銀到矽(001)表面所產生的缺陷(MDVs)間各向不同性的交互作用;最後一部份是銅在矽(001)表面成長情形的研究。
我們使用掃描穿隧顯微鏡(STM)為主要的研究工具;由於這個技術的成熟簡單,易於改裝或增添新的功能,而且由mm到原子解析度的掃瞄範圍改變是非常容易。因此,STM是非常適合在不同環境、尺度下,研究表面高低起伏的理想工具。
在第一個主題中,我們在大尺度的範圍(mm)下,觀察矽(001)表面結構因外加應力所產生的變化。這種因應力而產生的表面結構變化與矽(001)表面因重構(reconstruction)所衍生之各向不同性的應力場有很大的關係。我們發現在兩個互相垂直的方向上,這個舒解外加應力的機制是不一樣的;當應力垂直台階時,台階先兩兩成對,然後台階對們聚集成束,一起成波浪狀導致小丘和小坑的產生;當應力和台階平行時,台階仍兩兩成對,然後台階對們產生劇烈的彎曲,形成尖點(cusps),最後產生很深的溝槽。
在第二個主題中,我們發現蒸鍍少量的銀到矽(001)表面會產生許多B-type缺陷(vacancies)。當這種因銀產生的缺陷數量大於~ 10%時,在矽(001)2X1表面上,這些缺陷會排成許多線狀結構(DVLs);這是因為在同一雙原子列(the dimer row)上的缺陷間,是互斥的長程作用力;在相鄰的雙原子列上的缺陷間,是互相吸引的短程作用力。我們由這些線狀結構(DVLs)的熱平衡態測量所得的資料統計,得到這交互作用的大小和形式。
最後一個主題,我們在兩種溫度下蒸鍍0 ~ 30ML的銅到矽(001)2X1表面,用STM觀察表面的高低起伏變化。在室溫下,許多相同大小和高度的顆粒在此表面形成。在高溫下(約500℃),有數百埃(A)高的島嶼形成,在這些大島嶼之間是相當平坦的區域;在這平坦的區域上,有一些由缺陷形成的線狀結構和破碎的雙原子列;與前一主題由銀產生的線狀結構比較,它們比較寬(~4a),比較直,而且使表面比較粗糙。

This thesis is composed of three parts. The first part is about strain-direction-dependent growth morphology of vicinal Si (001) surfaces. The second part is about the anisotropic interaction of Ag-induced missing dimer vacancies on Si (001) surfaces. The last part is about the growth of copper on Si (001) surfaces.
The scanning tunneling microscope (STM) was employed to study the above three topics. The technique is known to have a rather simple and open configuration in its instrumentation and is very versatile in terms of scanning size, i.e. from the atomic to mm range. Because of these characteristics, it is ideal for the present studies of surface morphology under various environments in different scales.
In the first topic, we study the strain effect in a larger scale, i.e. in the μm order. The shape dependence of vicinal Si (001) surfaces on the applied uniaxial strains is observed. The dependence is intimately related to the anisotropic nature of the intrinsic strain field, which originates from the surface dimerization. The strain relief mechanism is shown to be different in two orthogonal directions. Normal to the steps, step-pair bunching and waving lead to the formation of hillocks and pits. Along the step direction, sharp bendings of the step pairs form cusps, which later develop into deep grooves.
In the second topic, we discovered that the missing dimer vacancies (DVs) could be formed by introducing a small amount of high-purity silver onto Si (001) surfaces. Ag-induced missing dimer vacancies on Si (001) 2X1 surfaces are shown to form vacancy lines when the vacancy concentration is larger than ~10%. The formation of the vacancy lines is driven by the short-range attractive interaction between the vacancies in the adjacent dimer rows and the long-range repulsive interaction between them in the same dimer row. The form and magnitudes of the interactions are derived from the thermally-excited wandering of the vacancy lines.
In the last chapter, we will show the effect of extrinsic strain induced by depositing copper at different substrate temperatures. At room temperature, many clusters with almost the same size and height are found on the surface with Cu coverage from a few monolayer (ML) to 30 ML. When deposited in a higher temperature, many tall hillocks with a height of hundreds A are developed. Among these hillocks, there exist flat areas with nearly the same structure composed of fragmental dimer rows, vacancy lines and a few very small clusters.

Chapter 1. Introduction ……………………………………………………1
Chapter 2. Si (001)-2X1 Surface and Experimental Techniques
2.1 Si (001)-2X1 surface ………………………………………6
2.2 Experimental Techniques …………………………………11
2.3 Tips and Samples Preparation ……………………………15
Chapter 3. Strain-Direction-Dependent Growth Morphology of Vicinal Si (001) surface
3.1 Introduction ………………………………………………17
3.2 Experimental Procedures …………………………………21
3.3 Result and Discussion ……………………………………23
3.4 Summary …………………………………………………33
Chapter 4. Anisotropic Interaction of Ag-induced Missing Dimer Vacancies on Si (001) Surfaces
4.1 Introduction ………………………………………………34
4.2 Experimental Method ………………………………………38
4.3 Results and Discussion ……………………………………40
4.4 Summary …………………………………………………48
Chapter 5. The Growth of Copper on a Si (001) surfaces
5.1 Introduction ………………………………………………49
5.2 Experimental Procedures …………………………………51
5.3 Results and Discussion ……………………………………53
5.4 Summary …………………………………………………61
Chapter 6. Conclusions ……………………………………………………64

Reference
[1] R. M. Tromp, R. J. Hamers, and J. E. Demuth, Phys. Rev. Lett. 55 (1985) 1303.
[2] B. S. Swartzentruber, Y. W. Mo, M. B. Webb and M. G. Lagally, J. Vac. Sci. Technol. A7 (1989) 2901.
[3] P. Bedrossian and T. Klitsner, Phys. Rev. Lett. 68 (1992) 646.
[4] H. J. W. Zandvliet, H. Elswijk, E. J. van Loenen and I. S. T. Tsong, Phys. Rev. B 50 (1992) 7581.
[5] H. Feil, H. J. W. Zandvliet, M.-H. Tsai, J. D. Dow and I. S. T. Tsong, Phys. Rev. Lett. 69 (1992) 3076.
[6] T. Engel, Surf. Sci. Rep. 18 (1993) 91.
[7] D. Rioux, R. J. Pechman, M. Chander and J. H. Weaver, Phys. Rev. B 50 (1994) 4430.
[8] D. Rioux, F. Stepniak, R. J. Pechman and J. H. Weaver, Phys. Rev. B 51 (1995) 10981.
[9] Y. Wei, L. Li and I. S. T. Tsong, Appl. Phys. Lett. 66 (1995) 1818.
[10] F. K. Men, A. R. Smith, K. J. Chao, Z. Zhang and C. K. Shih, Phys. Rev. B 52 (1995) R8650.
[11] H. Niehus, U. K. Koehler, M. Copel and J. E. Demuth, J. Microsc. 152 (1988) 735.
[12] H. J. W. Zandvliet, H. K. Louwsma, P. E. Hegeman and B. Poelsema, Phys. Rev. Lett. 75 (1995) 3890.
[13] X. Chen, F. Wu, Z. Zhang and M. G. Lagally, Phys. Rev. Lett. 73 (1994) 850.
[14] Ch. Park, R. Z. Bakhtizin, T. Hashizume and T. Sakurai, J. Vac. Sci. Technol. B 12 (1994) 2049.
[15] J. Tersoff, Phys. Rev. B 45 (1992) 8833.
[16] J. Wang, T. A. Arias and J. D. Joannopoulos, Phys. Rev. B 47 (1993) 10497.
[17] H. Kahata and K. Yagi, Surf. Sci. 220 (1989) 131.
[18] P. C. Weakliem, Z. Zhang and H. Metiu, Surf. Sci. 336 (1995) 303.
[19] N. C. Bartelt, T. L. Einstein and E. D. Williams, Surf. Sci. 276 (1992) 308.
[20] T. Michely, M. C. Reuter, M. Copel and R. M. Tromp, Phys. Rev. Lett. 73 (1994) 2095.
[21] S. Folsch, D. Winau, G. Meyer, K. H. Rieder, M. Horn-von Hoegen, T. Schmidt and M. Henzler, Appl. Phys. Lett. 67 (1995) 2185.
[22] X. F. Lin, K. J. Wan and T. Nogami, Phys. Rev. B 47 (1993) 10947.
[23] N. Kitamura, M. G. Lagally and M. B. Webb, Phys. Rev. Lett. 71 (1993) 2082.
[24] K. C. Pandey, in : Proceedings of the Seventh International Conference on the Physics of Semiconductors, Eds. J. D. Chadi and W. A. Harrison (Springer, New York, 1985) p. 55.
[25] O. L. Alerhand, D. Vanderbilt, R. D. Meade and J. D. Joanopoulos, Phys. Rev. Lett. 61 (1988) 1973.
[26] M. B. Webb, Surf. Sci. 299/300 (1994) 454.
[27] J. H. van der Merwe, J. Appl. Phys. 34 (1963) 117 ; 34 (1963) 123.
[28] J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 29 (1975) 273 ; 32 (1976) 265.
[29] R. J. Asaro and W. A. Tiller, Metall. Trans. 3 (1972) 1789.
[30] M. A. Grinfeld, Sov. Phys. Dokl. 31 (1986) 831.
[31] R. H. Torii and S. Balibar, J. Low Temp. Phys. 89 (1992) 391.
[32] J. Berrehar, C. Caroli, C. Lapersonne-Meyer, and M. Schott, Phys. Rev. B 46 (1992) 13487.
[33] D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64 (1990) 1943.
[34] D. Vanderbilt and L. K. Wickham, in Evolution of Thin-Film and Surface Microstructure, edited by C. V. Thompson, J. Y. Tsao and D. J. Srolovitz, MRS Symposia Proceedings No. 202 (Materials Research Society, Pittsburgh, 1991), p. 555.
[35] C. W. Snyder, B. G. Orr, D. Kessler and L. M. Sander, Phys. Rev. Lett. 66 (1991) 3032.
[36] B. J. Spencer, P. W. Voorhees and S. H. Davis, Phys. Rev. Lett. 67 (1991) 3696.
[37] F. K. LeGoues, B. S. Meyerson, J. F. Morar and P. D. Kirchner, J. Appl. Phys. 71 (1992) 4230.
[38] D. E. Jesson, S. J. Pennycook, J. M. Baribeau and D. C. Houghton, Phys. Rev. Lett. 71 (1993) 1744.
[39] Y. H. Xie et al., Phys. Rev. Lett. 73 (1994) 3006.
[40] J. Tersoff and F. K. LeGoues, Phys. Rev. Lett. 72 (1994) 3570.
[41] Originated from the fourfold symmetry of the bulk-truncked surface, the reconstructed surface exhibits a rotational degeneracy between the 2X1 (domain A) and 1X2 (domain B) phases. A type-A (type-B) step SA (SB) connects an upper 2X1 (1X2) terrace with a lower 1X2 (2X1) terrace. For reference, see D. J. Chadi, Phys. Rev. Lett. 43 (1979) 433 ; 59 (1987) 1691.
[42] F. K. Men, W. E. Packard and W. B. Webb, Phys. Rev. Lett. 61 (1988) 2469.
[43] O. L. Alerhand, D. Vanderbilt, R. D. Meade and J. D. Joanopoulos, Phys. Rev. Lett. 61 (1988) 1973 ; V. I. Marchenko, JETP Lett. 33 (1981) 381.
[44] C. C. Umbach, M. E. Keefe and J. M. Blakely, J. Vac. Sci. Technol. A 11 (1993) 1830 ; Y. W. Mo, J. Kleiner, M. B. Webb and M. G. Lagally, Phys. Rev. Lett. 66 (1991) 1988.
[45] J. Tersoff, Phys. Rev. Lett. 74 (1995) 4962 ; Y. H. Xie et al., Phys. Rev. Lett. 74 (1995) 4963.
[46] J. Tersoff, Y. H. Phang, Zhenyu Zhang and M. G. Lagally, Phys. Rev. Lett. 75 (1995) 2730.
[47] J. Tersoff, and E. Pehlke, Phys. Rev. Lett. 68 (1992) 816.
[48] R. M. Tromp and M. C. Reuter, Phys. Rev. Lett. 68 (1992) 820 ; Phys. Rev. B 47 (1993) 7598.
[49] These values are underestimated because the relaxation through surface undulation is not included. Thus, the larger value calculated at a region with a wider periodic separation between step pairs seems more reliable. According to sample clamping geometry, a rough estimation of the strain at the image-taken position along the sample can be a reference to this value.
[50] W. H. Yang and D. J. Srolovitz, Phys. Rev. Lett. 71 (1993) 1593 ; D. J. Srolovitz, Acta Metall. 37 (1989) 621.
[51] M. B. Webb, F. K. Men, B. S. Swartzentruber, R. Kariotis and M. G. Lagally, Surf. Sci. 242 (1991) 23.
[52] O. L. Alerhand, A. Nihat Berker, J. D. Joannopoulos, D. Vanderbilt, R. J. Hamers and J. E. Demuth, Phys. Rev. Lett. 64 (1990) 2406.
[53] R. J. Hamers and U. K. Kohler, J. Vac. Sci. Technol. A 7 (1989) 2854.
[54] T. T. Tsong, "Atom-probe field ion microscopy" (1990) p. 112.
[55] J. P. Ibe et al., J. Vac. Sci. Technol. A 8 (1990) 3570.
[56] J. Garnaes et al., J. Vac. Sci. Technol. A 8 (1990) 441.
[57] C. S. Liu and L. J. Chen, Appl. Surf. Sci. 92 (1996) 84
[58] T. Koshikawa, T. Yasue, H. Tanaka, I. Sumita and Y. Kido, Proc. Symp. on Surf. Sci., eds. G. Betz and P. Varga (Kaprun, 1993), p. 77.
[59] M. Hanbucken and G. Le Lay, Surf. Sci. 168 (1986) 122.
[60] P. Mathiez, E. Daugy, F.Salvan, J. J. Metois and M. Hanbucken, Surf. Sci. 168 (1986) 158.
[61] T. Ichinokawa, T. Inoue, H. Izumi and Y. Sakai, Surf. Sci. 241 (1991) 416.
[62] H. Itoh, T. Ann, T. Kawasaki and T. Ichinokawa, Surf. Rev. & Lett. 5 (1998) 747.
[63] T. Ikeda, T. Watanabe, H. Itoh and T. Ichinokawa, Surf. Rev. & Lett. 3 (1996) 1377.
[64] T. Ikeda, Y. Kawashima, H. Itoh and T. Ichinokawa, Surf. Sci. 336 (1995) 76.
[65] T. Ikeda, Y. Kawashima, H. Itoh and T Ichinokawa, Surf. Sci. 342 (1995) 11.
[66] T. Ohmi, T. Saito, T. Shibata and T. Nitta, Appl. Phys. Lett. 52 (1988) 2236.
[67] P. Bai, G. R. Yang, L. You, T. M. Lu and D. S. Koorr, J. Mater. Res. 5 (1990) 989.
[68] J. Ecchigoya, H. Enoki, T.Satoh, T. Waki, T. Ohmi, M. Otsuki and T. Shibata, Appl. Surf. Sci. 56-58 (1992) 463.
[69] J. Ecchigoya, T. Satoh and T. Ohmi, Acta Metall. Mater. 41 (1993) 229.
[70] Chin-An Chang, J. Appl. Phys. 67 (1990) 566.
[71] Chin-An Chang, Appl. Phys. Lett. 57 (1990) 2239.
[72] C. S. Liu and L. J. Chen, J. Appl. Phys. 74 (1993) 5501.
[73] P. W. Murry, R. Lindsay, F. M. Leibsle, P. L. Wincott and G. Thornton, Phys. Rev. B 54 (1996) 13468.
[74] H. Miyazaki, K. Hinode, Y. homma and K. Mukai, Jpn. J. Appl. Phys. 48 (1987) 329.
[75] A. Cros, M. D. Aboelfotoh and K. N. Tu, J. Appl. Phys. 67 (1990) 3328.
[76] C. S. Chang, Y. M. Huang and T. T. Tsong, Phys. Rev. Lett. 77 (1996) 2021.
[77] C. S. Chang, Y. M. Huang and T. T. Tsong, Surf. Sci. Lett. 367 (1996) L8

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊