(3.237.97.64) 您好!臺灣時間:2021/03/09 10:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周姿佑
研究生(外文):Tzu-Yu Chou
論文名稱:農業纖維素誘導嗜高溫菌生產纖維素酶之探討
論文名稱(外文):Induction and Production of Cellulase by Thermophilies Grown on Agricultural Cellulose Materials
指導教授:游若篍
指導教授(外文):Roch-Chui Yu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:116
中文關鍵詞:嗜高溫菌纖維素酶內切型纖維素酶外切型纖維素酶β-葡萄糖苷甘蔗渣玉米穗軸
外文關鍵詞:thermophiliescellulaseCMCaseavicelaseβ-glucosidasesugarcane bagassescorn cobs
相關次數:
  • 被引用被引用:13
  • 點閱點閱:270
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用台灣地區之農業纖維素材料-玉米穗軸及甘蔗渣作為碳源,誘導嗜高溫菌生產纖維素。結果顯示(1)以3%玉米穗軸作為Mandels-Reese 培養基中的取代碳源,接種1號菌在50℃下培養2天可以獲得最高產量的CMCase 127.1 mU/mL。(2)以3%玉米穗軸作為Mandels-Reese 培養基中的取代碳源,接種3號菌培養2天可以得到最高的Avicelase產量19.4 mU/mL。(3)以5%玉米穗軸作為Mandels-Reese 培養基中的取代碳源,接種2號菌培養2天可以得到最高的β-glucosidase產量37.9 mU/mL。以飽和度30-45%之丙酮進行酵素之區分回收時,可獲得最高的CMCase比活性1.42 U/mg;其最適pH為5.0,而最適作用溫度為50℃。此外在丙酮飽和度30-45%的蛋白質區分中也可以得到最高的Avicelase1比活性0.27 U/mg;其最適pH為5.0,最適作用溫度為60℃。而在丙酮飽和度45-60%的沉澱蛋白質部分,可以得到最高的β-glucisidase比活性0.23 U/mg;其最適pH 為5.0,最適作用溫度為60℃。
In order to improve the utilization of agricultural cellulose materials, this thesis is aimed to study the production of cellulase by thermophilies, using corn cobs and sugar bagasses as carbon sources. Optimal carbon sources and their concentrations for cellulase production on Mandels-Reese medium at 50℃ were as follows: (1) Three percentage of corn cobs as carbon source cultured by strain No. 1 for 2 days used for CMCase production. (2) Three percentage of corn cobs as carbon source cultured by strain No. 3 for 2 days used for avicelase production. (3) Five percentage of corn cobs as carbon source cultured by strain No. 2 for 2 days used for β-glucosidase production. Major CMCase and avicelase activities were obtained by 30-45% acetone fractionation, while major β-glucosidase activity were obtained by 45-60% acetone fractionation. The optimal pHs and temperatures for CMCase, avicelase andβ-glucosidase were at pH 5.0 and 50℃, at pH 5.0 and 60℃, at pH 5.0 and at 60℃, respectively.
中文摘要……………………………………………………………i
英文摘要…………………………………………………………...ii
壹、 前言………………………………………………………….1
貳、 文獻整理…………………………………………………….3
一、 嗜高溫菌…………………………………………………...3
二、 纖維素…………………………………………………...…5
三、 農業纖維素物質………………………………………...…6
四、 纖維素的利用………………………………………...……9
五、 纖維素材料之微生物分解與利用…………………….....10
(一) 纖維素和半纖維素的分解………………………….10
(二) 利用微生物生產單細胞蛋白質………………….....11
六、 纖維素的前處理………………………………………….12
(一) 鹼處理…………………………………………….....12
(二) 酸處理…………………………………………….....13
(三) 氧化劑處理………………………………………….14
(四) 利用水蒸氣或有機溶劑處理…………………….....15
(五) 減少基質的顆粒大小……………………………….15
七、 纖維素酶………………………………………………….17
(一) 內切型纖維素…………………………………….17
(二) 外切型纖維素………………………………….....18
(三) β-葡萄糖酶酵素……………………………………18
八、 纖維素酶的作用機制…………………………………….19
(一) 早期的C1-Cx假說………………………………….19
(二) 修正的C1假說…………………………………...…21
(三) 產物迴饋抑制作用……………………………….....21
(四) 酵素的相乘作用………………………………….…25
九、 可分解纖維素的微生物種類…………………………….28
十、 影響纖維素酶生產的因素………………………….……29
十一、纖維素酶的利用…………………………..……….……33
參、 材料與方法………………………………………………...35
一、 試驗菌株………………………………………………….35
二、 培養基與藥品…………………………………………….35
(一) 培養基……………………………………………….35
(二) 化學藥品…………………………………………….35
三、 取代碳源的製備………………………………………….36
四、 主要儀器設備及器材…………………………………….37
五、 培養方法………………………………………………….37
(一) 菌株的保存………………………………………….37
(二) 菌株的活化………………………………………….36
(三) 液態培養…………………………………………….36
六、 粗酵素液製備…………………………………………….38
七、 纖維素酶活性之測定…………………………………….38
1. 內切型纖維素酶活性之測定…………………………...38
2. 外切型纖維素酶活性之測定…………………………...38
3. β-葡萄糖酶酵素之測定………………………………..39
4. 還原糖之測定…………………………………………...39
八、 纖維素酶的純化及特性分析…………………………….40
1. 丙酮沉澱………………………………………………...40
2. 硫酸銨沉澱……………………………………………...40
3. 蛋白質測定……………………………………………...41
4. 酵素液之特性…………………………………………...41
九、 纖維素水解產物之分析………………………………….42
薄層層析法……………………………………………….42
肆、 結果與討論………………………………………………...43
一、 嗜高溫菌型態…………………………………………….43
二、 不同纖維素材料對菌體生產纖維素酶的影響………….43
(一) 培養時間對菌體生產纖維素酶的影響…………….44
(二) 不同碳源種類對菌體生產纖維素酶的影響……….46
1. 以1%玉米穗軸作為Mandels-Reese培養基中之取代碳源……………………………………………………46
2. 以1%甘蔗渣作為Mandels-Reese培養基中之取代碳源………………………………………………………48
3. 取代碳源培養基中還原糖的變化情形………………52
(三) 不同碳源濃度對菌體生產纖維素酶的影響……….52
1. 提高Mandels-Reese培養基中CMC碳源濃度……..53
2. 提高Mandels-Reese培養基中玉米穗軸碳源濃度….53
3. 提高Mandels-Reese培養基中甘蔗渣碳源濃度…….58
三、 纖維素蛋白質沉澱……………………………………….67
(一) 纖維素酶CMCase蛋白質沉澱……………………..67
1. 蛋白質的區分沉澱……………………………………68
2. 最適作用pH…………………………………………...71
3. pH安定性……………………………………………...73
4. 最適作用溫度…………………………………………73
5. 熱安定性………………………………………………73
(二) 纖維素酶Avicelase蛋白質沉澱……………………76
1. 蛋白質的區分沉澱……………………………………79
2. 最適作用pH…………………………………………...79
3. pH安定性……………………………………………...82
4. 最適作用溫度…………………………………………82
5. 熱安定性………………………………………………85
(三) 纖維素酶β-glucosidase蛋白質沉澱………………88
1. 蛋白質的區分沉澱……………………………………88
2. 最適作用pH…………………………………………..88
3. pH安定性……………………………………………..90
4. 最適作用溫度…………………………………………90
5. 熱安定性………………………………………………93
四、 纖維素酶水解產物分析………………………………….96
(一) 培養液中水解產物分析…………………………….96
(二) 酵素水解產物分析………………………………...102
伍、 結論……………………………………………………….105
陸、 參考文獻………………………………………………….107
表 次
頁次
表一、 嗜高溫菌的分類……………………………………….….4
表二、 玉米穗軸之化學組成………………………………….….8
表三、 甘蔗渣之化學組成………………………………………..8
表四、 Trichoderma reesei的纖維素調節機制………………24
表五、 不同菌株形成纖維素酶對不同基質的協同反應………26
表六、 以1%CMC作為碳源在Mandels-Reese培養基中纖維素活性……………………………………………………45
表七、 以1%玉米穗軸作為Mandels - Reese培養基中的取代碳源時纖維素酶之活性……………………………………47
表八、 以1%甘蔗渣作為Mandels-Reese培養基中的取代碳源時纖維素之活性………………………………………51
表九、 以1.5%CMC作為碳源在Mandels-Reese培養基中纖維素酶活性………………………………………………...56
表十、 以3%玉米穗軸作為Mandels-Reese培養基中的取代碳源時纖維素酶之活性……………………………………59
表十一、 以5%玉米穗軸作為Mandels-Reese培養基中的取代碳源時纖維素酶之活性……………………………....60
表十二、 以2%甘蔗渣作為Mandels-Reese培養基中的取代碳源時纖維素酶之活性…………………………………64
表十三、 以3%甘蔗渣作為Mandels-Reese培養基中的取代碳源時纖維素酶之活性…………………………………65
表十四、丙酮區分對1號菌纖維素酶CMCase之沉澱效果.…69
表十五、硫酸銨區分對1號菌纖維素酶CMCase之沉澱效果……………………………………………………....70
表十六、不同微生物生產之CMCase性質比較……………….78
表十七、丙酮區分對3號菌纖維素酶Avicelase沉澱效果……80
表十八、不同微生物生產之avicelase性質比較……………….87
表十九、丙酮區分對2號菌纖維素酶β-glucosidase沈澱效果…………………………………………………….…89
表二十、不同微生物生產之β-glucosidase性質比較…………97
圖 次
頁次
圖一、 不同前處理方式及纖維素酶作用分解纖維素…………16
圖二、 早期對纖維素酶作用機制之構想………………………20
圖三、 修正的纖維素酶作用機制假說…………………………20
圖四、 纖維素被水解時各酵素之相乘作用模式………………21
圖五、 三種纖維素酶受終產物迴饋抑制的情形………………23
圖六、 不同碳源種類對於1號菌生產CMCase活性及培養液中還原糖的影響……………………………………………49
圖七、 改變Mandels-Reeses培養基中CMC濃度對於1號菌生產CMCase活性及培養液中還原糖的影響……………54
圖八、 改變Mandels-Reese培養基中玉米穗軸濃度對於1號菌生產CMCase活性及培養液中還原糖的影響…………57
圖九、 改變Mandels-Reese培養基中甘蔗渣濃度對於1號菌生產CMCase活性及培養液中還原糖的影響…………….62
圖十、 不同pH值對1號菌CMCase活性之影響………………...72
圖十一、1號菌CMCase之pH安定性…………………………….74
圖十二、不同pH值及溫度對1號菌CMCase活性之影響……….75
圖十三、1號菌之CMCase在不同pH值之熱安定性…………….77
圖十四、不同pH值對3號菌avicelase活性之影響……………….81
圖十五、 3號菌avicelase之pH安定性…………………………..83
圖十六、 不同pH值及溫度對3號菌Avicelase活性之影響…….84
圖十七、 3號菌avicelase之熱安定性…………………………...86
圖十八、 不同pH值對2號菌β-glucosidase活性之影響……….91
圖十九、 2號菌β-glucosidase之pH安定性…………………….92
圖二十、 不同pH值溫度對2號菌β-glucosidase活性之影響.…94
圖二十一、2號菌β-glucosidase在不同pH值之熱安定性……..95
圖二十二、培養液中水解產物之TLC圖-1……………………98
圖二十三、培養液中水解產物之TLC圖-2……………………99
圖二十四、培養液中水解產物之TLC圖-3..…………………100
圖二十五、No. 1纖維素酶水解產物之TLC圖……………..104
西澤俊一。1981。纖維素總論。南山堂出版社。
村尾澤夫,荒井基夫,阪本禮一郎。1987。セルラ-ゼ。講談社書局。第23-116頁。東京。
王三郎、梁瑞麟及蔡育達。1995。氫氧化鈉前處理對酵素糖化農產廢棄物之影響。中國環境工程學刊。5:309-316
王鳳英。1994。利用固態發酵以玉米穗軸為基質生產纖維素分解素。國立台灣大學農業化學研究所博士論文。
台灣省政府農林廳。1998。台灣農業年報。
李季眉。1981。微生物對纖維素廢棄物之利用。食品工業。12(4)13-18。
林澤揚。1996。Trichoderma longibrachiatum185聚木糖之特性探討及半纖維素碳源對酵素誘導之影響。國立中興大學食品科學研究所碩士論文。
范晉嘉、李洪潮。1983。以Trichoderma koningii W-10菌株之纖維素分解酵素糖化竹筍殼和稻殼之研究。科學發展月刊。11:925-938。
張文重。1976。蛋白質分解酵素。環球書社。
梁瑞麟。1992。放線菌Streptomyces actuosus A-151及黴菌Aspergillus funigatus G-393所生產纖維素酶和木聚醣酶之研究。大葉工學院食品工程研究所碩士論文。
陳乃菁、余碧、邱文石、曾浩洋。1993。碳源及培養條件對Trichoderma reesei生產纖維素酶之影響。農林學報。42(2): 9-17.
黃山內。1988。有機農業之發展及其重要性。有機農業研討會論文集。台中農業改良場。
黃妃君。1996。纖維素分解酵素生產菌的篩選培養條件及糖化作用之探討。國立屏東科技大學食品技術研究所碩士論文。
楊盛行、魏嘉碧、顧鍇、蔡錫舜。1991。台灣地區食品農業廢棄物之產量。中華生質能源學會會誌。10(1/2)70-87。
葉丁源。1997。嗜高溫放線菌纖維素分解酵素之探討。國立台灣大學農業化學研究所碩士論文。
劉文雄,李重義、黎慶。1984。高溫性真菌Talaromyces sp. 207和Thermoascus sp. 239耐熱性纖維素分解酵素之生產及其性質。中國農業化學會誌。22:183-191。
蔡芷季、呂玉梅及蔡珊珊。1991。利用酵素將鹼處理過之稻草糖化。中國農業化學會誌。29: 145-153。
蕭蓉禎。1996。Bacillus pumilus IMR 1211木聚醣之純化與性質研究。靜宜大學食品營養研究所碩士論文。
簡里玲、張珍田、詹恭巨。1999。機能性食品素材木寡糖之製備及生理效應研究。產業科技發展學術合作論文集。pp.275-281。
闕麗卿、李洪朝。1986。以纖維素物質生產丙酮丁醇。1.纖維素物質之酵素水解。中國農業化學會誌。24: 320-329。
Aiba, S., Imanaka, T., and Koizumi, J.I. 1983. Transformation of Bacillus stearothermophilus with plasmid DNA and its application to molecular cloning. Ann. N. Y. Acad. Sci. 413: 57-70.
Aiello, C., Ferrer, A., and Ledesma, A. 1996. Effect of alkaline treatment at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414. Bioresource Technol. 57 : 3-18.
Bagga, P. S., Sandhu, D. K., and Sharma, S. 1990. Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulan. J. Appl. Bacteriol. 68: 61-68.
Bailey, M. J., Buchert, J., and Viikari, L. 1993. Effect of pH on production of xylanase by Trichoderma reesei on xylan - and cellulose - based media. Appl. Microbiol. Biotechnol. 40: 224-229.
Bastawde, K. B. 1992. Xylan structure, microbial xylanases, and their mode of action. World J. Microbiol. Biotechnol. 8: 353-368.
Beguin, P., and Aubert, J. P. 1993. The biological degradation of cellulose. FEMS Microbiol. Rev. 13: 25-58.
Beltrame, P. L., Carniti, P., and Visciglio, A. 1992. Fractionation and bioconversion of steam-expolded wheat straw. Bioresource Technol. 39: 165-171.
Bisaria, V. S., and Ghose, T. K. 1981. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enz. Microb. Technol. 3: 90-104.
Binder, A., and Ghose, T. K. 1978. Adsorption of cellulose by Trichoderma viride. Biotechnol. Bioeng. 20: 1187-1199.
Bollag, D. M., Rozycki, M. D., and Edelstein, S. J. 1996. Protein method. 2nd Ed. Wiley-Liss, New York.
Bradford, M. M.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein - dye bind. Anal. Biochem. 72: 248-254.
Chahal, D. S., Swan, J. E., Moo-Young, M. 1977. Protein and cellulase production by Chaetomium cellulolyticum grown on wheat straw. Develop. Ind. Microbiol. 18: 433-442.
Claeyssens, M., Tilbeurgh, H. V., Tomme, P., Wood, T. M. and Mcrae, S. I. 1989. Fungal cellulase sysytem. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 261: 819-825.
Coughlan, M. P. 1985. Cellulase: production properties and application. Biochem. Soc. Trans. 13: 405-406.
Cowan, D. A. 1992. Biochemistry and molecular biology of extrmely thermophilic archaeobacteria. In: Molecular Biology and Biotechnology of Extremophilies, Chap. 1. Ed. by Herbert, R. A., and Sharp, R. J. Chapman and Hall, New York, pp. 1-43.
Dierick, N. A. 1989. Biotechnology aids to improve feed and feed digestion:enzyme and fermentation. Aech. Arim. Nutr. Berlin. 39: 241-261.
Eberhart, B. M., and Beck, R. S. 1973. Induction of β-glucosidase in Neurospora crassa. J. Bacteriol. 116: 295-303.
Fermor, T. R., and Wood , D. A. 1979. The microbiology and enzymology of wheat straw mushroom compost production. In: Straw Decay and Its Effect on Disposal and Utilization. Ed. by E. Grossbard. Wiley, Chichester, England, pp. 10-120.
Gallo, B. J. 1981. Cellulase-Producing Microorganisms. US Patent No. 4, 275: 163.
Gamal, R. F. 1985. Effect of substrate pretreatment on microbial protein production. Egypt. J. Microbiol. ( Spec. Issue ) 81-89.
Garcia-Breijo, F. J. 1989. Alcohol from biomass Ⅲ. Hydrolysis of the lignocellulosic fraction obtained from agricultural wastes and sorghum harvests. Rev. Agroquim. Technol. Aliment. 29: 501-509.
Ghose, T. K. 1978. Cellulase biosynthesis and hydrolysis of cellulosic substance. Adv. Biochem. Eng. 6: 39-43.
Ghose, T. K. and Kostick, J. A. 1970. A model for continuous enzyme saccharification of cellulase with simultaneous removal of glucose syrup. Biotechnol. Bioeng. 12: 921-946.
Glenn, M., Ghosh, A., and Ghosh, B. K. 1985. Subcellular fraction of hypercellulolytic mutant, Trichderma reesei RUT-C30: localization of endoglucanase in microsomal fraction. Appl. Environ. Microbiol. 49: 1137-1143.
Haabdoris, K., Szakmary, K. H., and Kubicek, C. P. 1990. Formation of the extracellular proteases from Trichoderma reesei QM 9414 involved in cellulase degradation. J. Biotechnol. 16: 187-198.
Han, Y. W., and Callihan, C. D. 1974. Cellulose fermentation: effect of substrate pretreatment on microbial growth. Appl. Microbiol. 27: 159-165.
Hang, Y. D., Lee, C. Y., and Woodans, E. E. 1986. Solid-state fermentation of grape pomaces for ethanol production. Biotechnol. Lett. 8: 53-56.
Hansen, S. A. 1975. Thin layer chromatographic method for identification of oligosaccharides in starch hydrolyzates. J. Chromatog. 105 : 388 - 390.
Henrissat, B., Claeyssens, M., Jomme, P., Lemesle, L., and Mornon, J. P. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene. 81: 83-95.
Hesselman, K. and Aman, P. 1986. The effect of β-glucanase on the utilization of starch and nitrogen by broiler chicken fed on barley of low or high viscosity. Anim. Feed Sci. Technol. 15: 83-93.
Hrmova, M., Biely, P., and Vr?anska, M. 1986. Specificity of cellulase and β- xylanase induction in Trichoderma reesei QW 9414. Arch. Microbiol. 144: 307-311.
Huang, L., Hseu, T. H., and Wey, T. T. 1991. Purification and characterization of an endoxylanase from Trichoderma koningii G-39. Biochem. J. 278: 329-333.
Hudson, J. A., Morgan, H. W., and Daniel, R. M. 1991. The cellulase activity of an extreme thermophile. Appl. Microbiol. Biotechnol. 35: 270-273.
Johri, B. N., Jain, S., and Chouhan, S. 1985. Enzymes from thermophilic fungi: proteases and lipases. Proc. Indian Acad. Sci. Pl. Sci. 94: 17-196.
Kane, B. E., and Mullins, J. T. 1973. Thermophilic fungi in a municipal waste compost system. Mycologia. 65: 1087-1100.
Kitano, K., Kintaka, K., Kamamoto, K., Nana, K., and Nakao, Y. 1975. Occurrence of 6-aminopenicillanic acid in culture broths of strains belonging to genera Thermoascus, Gymnoascus, Polypaecium and Malbranchea. J. Ferment. Technol. 62: 63-69.
Kluepfel, D., Shareck, F., Mondou, F., and Morosoli, R. 1986. Characterization of cellulase and xylanase activities of Streptomyces lividans. Appl. Microbiol. Biotechnol. 24: 230-234.
Kobayashi, T., Romaniec, M. P., Fauth, U., and Demain, A. L. 1990. Subcellulosome preparation with high cellulase activity from Clostridium thermocellum. Appl. Environ. Microbiol. 56: 3040-3046.
Lacey, J. 1990. Isolation of thermophilic microorganisms. In: Isolation of Biotechnological Organisms from Nature, Chap. 6. Ed. by Labeda, D. P. McGraw-Hill Publishing Company, New York, pp. 141-181.
Ladisch, M. R., Ladisch, C.M., and Tsao, G. T. 1978. Cellulose to sugars:New path gives quantitative yield. Sci. 201: 743-745.
Liaw, E. T. 1994. The relative active activity of the cellulase enzyme system of Trichoderma reesei QM 9419 with native and modified cellulosic substrates. Ph. D. Dissertation. Oregon State University.
Liaw, E. T., and Penner, M. H. 1990. Substrate-velocity relationship for Trichoderma viride cellulase-catalyzed hydrolysis of cellulose. Appl. Environ. Microbiol. 56: 2311-2318.
Liungdahl, L. G. 1979. Physiology of thermophilic bacteria. Adv. Microb. Physiol. 19: 149-243.
Lowe, S. E., Theodorou, M. K., and Trinci, A. P. J. 1987. Cellulases and xylanase of an anerobic rumen fungus grown on wheat straw cellulose and xylan. Appl. Environ. Microbiol. 53: 1216-1223.
Madamwar, D. 1989. Solid state fermentation for cellulase and β-glucosidase production by Aspergillus niger. J. Ferment. Technol. 67: 424-426.
Mandel, M., and Reese, E. T. 1956. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 73 : 263 -278.
Mandels, M. 1985. Applications of cellulases. Biochem. Soc. Trans. 13: 414-415.
Mandels, M. and Andreotti, R. E. 1978. Problems and challenges in the cellulose to cellulase fermentation. Process Biochem. 13: 6-13.
Mandels, M. and Sternberg, S. 1976. Recent advances in cellulase technology. J. Ferment. Technol. 54: 267-275.
Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
Miron, J. and Bzn-Ghedalza, D. 1992. The effect of sulphur dioxide application level on the biodegradation of wheat straw carbohydrates by rumen microorganisms and by Trichoderma viride cellulase. Bioresource Technol. 41: 139-144.
Mishra, S., and Gopalkrishnan, K. S. 1984. New method for isolation of cellulase constitutive mutants in Trichoderma reesei and partial characterization of one. J. Ferment. Technol. 62: 495-500.
Mohagheghi, A., Grohmann, K., and Wyman, C. E. 1988. Production of celluulase on mixtures of xylose and cellulose. Appl. Biochem. Biotechnol. 17: 263-277.
Moo-young, M., Chahal, D. S., and Vlach, D. 1978. Single cell protein from various chemically pretreated wood substrates using Chaetomium cellulolyticum. Biotechnol. Bioeng. 20: 107-118.
Panda, T., Bisaria, V. S., and Ghose, T. K. 1983. Studies on mixed fungal culture for cellulase and hemicellulase production. I. Optimization of medium for the mixed culture of Trichoderma reesei D1-6 and Aspergillus wentii Pt 2804. Biotechnol. Lett. 5: 767-772.
Rahman, S. S., Krishnamurti, C. R., and Kitts, W.D. 1968. Separation of cellooligosaccharides by thin layer chromatography. J. Chromatog. 38: 400-402.
Reese, E. T., Sin, R. G., and Levinson, H. 1950. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59: 485-493.
Reese, E. T., Siu, R. G. H., and Levinson, H. S. 1950. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. bacteriol. 59: 485-497.
Roa, M., Gaikwad, S., Mishra, C., and Deshpande, V. 1988. Induction and catabolite repression of cellulase in Penicillium funiculosum. Appl. Biochem. Biotechnol. 19: 129-137.
Ryu, D. D. and Mandels, M. 1980. Cellulase : biosynthesis and applications. Enzyme Microbiol. Technol. 2: 91-101.
Ryu, D. D. Y., Kim, C., and Mandels, M. 1984. Competitive adsorption of cellulase components and significance in a synergistic mechanism. Biotechnol. Bioeng. 26: 488-496.
Sahoo, D. K., Mishra, S., and Bisaria, V. S. 1986. Influence of L-sorbose on growth and enzyme synthesis of Trichoderma reesei C-5. J. Gen. Microbiol. 132: 2761-2766.
Saito, M., Matsura, I., Okazaki, H. 1979. TF-26 VX, an antibiotic produced by thermophilic fungus. J. Antibiotics. 32: 1210-1212.
Sanyal, A., Kundu, R. K., Sinha, S. N., and Dube, D. K. 1988. Extracellular cellolytic enzyme system of Aspergillus japonicus:Effect of different carbon sources. Enzyme Microb. Technol. 10: 85-90.
Saska, M., and Ozer, E. 1994. Aqueous extraction of sugarcane bagasse hemicellulose and production of xylose syrup. Biotechnol. Bioeng. 45 : 517-523.
Shin, S. B., Kitagawa, Y., Suga, K., and Ichikawa, K. 1978. Cellulase biosynthesis by Trichoderma viride on soluble substrate. J. Ferment. Technol. 56: 396-402.
Sin, T. S., and Oh, J. C. S. 1990. Spent brewery grains as substrate for the production of cellulases by Trichoderma reesei QM 9414. J. Ind. Microbiol. 5: 153-158.
Singh,A., and Kalro, M. S. 1978. Single cell protein from corncobs. J. Food Sci. Technol. 15: 249-252.
Somkuti, G. A., and Greenberg, R. 1979. Antimicrobial peptidase of thermophilic fungi. Dev. Ind. Microbiol. 20: 661-672.
Sternberg, D. 1976. Beta-glucosidase of Trichoderma : its biosynthesis and role in saccharification of cellulose. Appl. Environ. Microbiol. 31: 648-654.
Stutzenberger, F. 1994. Extracellular enzyme production by Thermomonospora curvata grown on bagasse. J. Indust. Microbiol. 13: 35-42.
Stutzenberger, F. J. 1972. Cellulolytic activity of Thermomonospora curvata : optimal assay conditions, partical purification, and production of the cellulase. Appl. Microbiol. 24: 83-90.
Stutzenberger, F. J. 1972.Cellulolytic activity of Thermomonospora curvata : nutritional requirements for cellulase production. Appl. Microbiol. 24: 77-82.
Tangun, S. K., Blanch, H. W., and Wilke, C. R. 1981. Enhanced production cellulase, hemicellulase and β-glucosidase by Trichoderma reesei RUT-C30. Biotechnol. Bioeng. 23: 1837-1849.
Tannenbaum, S, R., Wang, D. I. C. 1975. Single cell protein Ⅱ, 344-356. MIT Press, Cambridge, Massachusetts.pp. 344-356.
Teeri, T. T. 1997. Crystalline cellulose degradation : new insight into the function of cellobiohydrolases. Trends in biotechnology. 15: 161-167.
Trigo, C., and Ball, A. S. 1994. Production of extracellular enzymes during the solubilisation of straw by Thermomonospora fusca BD25. Appl. Microbiol. Biotechnol. 41: 366-372.
Viikari, L., Kantelinen, A., Buchert, J., and Puls, J. 1994. Enzymatic accessibility of xylans in lignocellulosic materials. Appl. Microbiol. Biotechnol. 41: 124-129.
Virendra, S. B., and Mishra, S. 1989. Regulatory aspects of cellulase biosynthesis and secretion. Crit. Rev. Biotech. 9: 61-103.
Walker, L. P., Wilson, D. B., Lrwin, C., McQuire, C., and Price, M. 1992. Fragmentation of cellulose by the major Thermomonospora fusca cellulase, Trichoderma reesei CBHⅠ, and their mixture. Biotechnol. Bioeng. 40: 1019-1026.
Wei, D. L., Lin, T. H., Kirimura, K., and Usami, S. 1995. Cellulase production by Xylaria regalis, a wood grown ascomycete. Fung. Sci. 10: 1-7.
Weill, C. E., and Hanke, P. 1962. Thin layer chromatography of maltooligosaccharides. Anal. Chem. 34: 1736-1737.
Wood, T. M., Mccrae, S. I., and Bhat, K. M. 1989. The mechanism of fungal cellulase action. Biochem. J. 260: 37-43.
Yang, S. S. 1988. Protein enrichment of sweet potato residue with amylolytic yeast by solid state fermentation. Biotechnol. Bioeng. 32: 886-890.
Yazdi, M. T., Woodward, J. R., and Radford, A. 1990. The cellulase complex of Neurospora crassa: activity, stability and release. J. Gen. Microbiol. 136: 1313-1319.
Yeoman, K. H., and Edward, C. 1994. Protease production by Streptomyces thermovulgaris grown on rapemeal-derived media. J. Appl. Bacteriol. 77:
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔