跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾嘉綾
研究生(外文):CHUNG, CHIA-LIN
論文名稱:線蟲捕捉菌Arthrobotrysoligospora扮演重複寄生菌之胞壁分解酵素及形態分化探討
論文名稱(外文):Nematode-trapping fungus Arthrobotrys oligospora as mycopathogen : cell wall lytic enzymes and morphogenesis
指導教授:曾顯雄曾顯雄引用關係
指導教授(外文):Tzean, Shean-Shong
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:1998
畢業學年度:87
語文別:中文
論文頁數:119
中文關鍵詞:線蟲捕捉菌重複寄生胞壁分解酵素形態分化
外文關鍵詞:Arthrobotrys oligosporanematode-trapping funguscell wall lytic enzymesmycoparasitismmorphogenesis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:709
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

Arthrobotrys oligospora係線蟲捕捉菌,能產生三度空間分布的粘著性捕捉網捕捉線蟲,以往曾被嘗試作為根瘤線蟲的生物防治劑。A. oligospora直到1978年才被發現,除了能藉著捕捉線蟲來汲取環境中缺乏的養分外,同時也能對特定種類的真菌,如Rhizoctonia solani, Geotrichopsis mycoparasitica, Matruchotia variaus進行超寄生 (mycoparasitism)。A. oligospora會朝真菌寄主新生菌絲出現的方向延伸出許多短側枝,碰觸並纏繞寄主,促使寄主菌絲縊縮、胞壁溶解、胞質滲漏,再吸收利用滲漏之養分。A. oligospora如何被誘導產生特化之線圈狀菌絲?又此特化之線圈狀菌絲會產生那些胞壁分解酵素,以溶蝕胞壁並進而消化吸收滲出的胞質?此等疑問則仍待釐清。
以基礎培養基 (basal medium) 添加滅過菌的R. solani菌絲體作為液體培養基培養A. oligospora,試圖誘導A. oligospora產生用來溶解R. solani 胞壁的酵素。活體 (in vivo) 檢測顯示A. oligospora能被誘導分泌胞外酵素,並能溶解R. solani胞壁,使其釋放出原生質體。在A. oligospora、R. solani滅過菌的菌絲體混合液體培養 (AxR) 過程中,A. oligospora被誘導產生更多量、活性更強之β-1,3-glucanase、protease、N-acetyl-glucosaminase (NAGase)、chitobiosidase、endochitinase等酵素,而cellulase活性則一直相當低。進一步對A. oligospora胞外酵素之粗濃縮液進行SDS-PAGE、native-PAGE及β-1,3-glucanase、chitinase、protease活性電泳,發現protease質量與不添加R. solani菌絲體相比較則明顯增加,而glucanase、chitinase則只有量的增加。
應用各種帶螢光之基質為受體,如Calcofluor White M2R New、Rhodamine B、BODIPY FL casein、BODIPY FL dextran、resorufin N-acetyl-β-D-glucosaminase、resorufin-β-D-glucopyranoside、Mu-NAG、Mu-β-D- N, N''-diacetylchitobiose、Mu-β-D- N, N'', N"-triacetylchitotriose、ELF-lipase, esterase, phosphatase substrate、FITC-lectins (FITC-ConA, WGA, SBA, DBA, UEA, PHA),進行微量分析A. oligospora寄生纏繞R. solani相互作用界面之胞壁分解酵素之質量與作用位置,結果顯示,兩者之界面,會有protease、α-1,6-glucanase、β-glucosidase、β-glucanase、chitinase ( NAGase, chitobiosidase, endochitinase)、lipase、esterase、phosphatase等酵素活性表現,及fucose、glucose、mannose、N-acetyl-glucosamine、N-acetyl-galactosamin、oligosaccharide殘基之存在。
環境條件常會影響超寄生現象的發生,一般而言,當A. oligospora生長良好時,菌絲分支增加,纏繞機率便隨之提昇;營養方面,當碳氮比 (glucose-NH4NO3) 為50:1時,纏繞比率最高,在所有受試氮素源中,有機、無機氮素源分別會加強或抑制A. oligospora的生長分支及超寄生能力,而一般生物最容易利用的碳素源 - glucose,雖能促進菌絲分支,卻對特化線圈狀菌絲的形成有顯著的迴饋抑制作用。
以往研究顯示真菌的形態分化通常受物理因子 (如:葉表氣孔構造、基質硬表…)、化學因子 (如:salt, volatile compound, peptide, cutin…) 之調控。但因A. oligospora無法纏繞已死亡的R. solani菌絲,物理因子可能非主要調控因素;至於化學因子方面,目前結果顯示,培養基若添加不同氨基酸,A. oligospora纏繞R. solani的比率及環繞數目即有所改變;而測試的數種離子,在25 mM較低濃度下,除Na+、K+、I-、Cl- 對超寄生現象影響不大之外,其餘的Cs+、Mg2+、Ca2+、Mn2+、HSO3-、CO3-2均或多或少抑制線圈狀菌絲之產生,但離子濃度增加到100 mM時,線圈狀纏繞比率普遍都會下降。
目次
壹、緒論 ……………………………………………………………………………1
貳、前人研究 ………………………………………………………………………3
一、真菌的超寄生現象 ……………………………………………………………3
二、Arthrobotrys oligospora 之特性 ………………………………………………6
三、胞壁分解酵素在超寄生過程當中所扮演的角色 ……………………………7
四、寄生菌與寄主間之辨識機制 …………………………………………………17
五、環境條件對超寄生行為之影響 ………………………………………………18
六、影響真菌形態分化的因子………………………………………………………20
七、影響線蟲捕捉菌形態分化的因子-nemin………………………………………22
參、材料與方法 ……………………………………………………………………23
一、Arthrobotrys oligospora 對 Rhizoctonia solani 產生之胞外分解酵素檢測…23
(一) Arthrobotrys oligospora 之液體培養 …………………………………………23
(二) 培養濾液所含酵素之生物測試………………………………………………24
(三) 酵素活性之測定………………………………………………………………25
(四) 不同碳素源對 A. oligospora 分泌胞外酵素的影響 ………………………29
(五) A oligospora 培養濾液之電泳分析………………………………………… 30
二、活體 (in vivo) 微量物質之定位與分析………………………………………34
三、掃描式電子顯微鏡材料製備與觀察……………………………………………38
四、影響形態分化的因子……………………………………………………………39
(一) 物理因子………………………………………………………………………39
(二) 化學因子………………………………………………………………………40
五、環境因子對 A oligospora 產生線圈狀纏繞構造的影響……………………43
(一) 溫度……………………………………………………………………………43
(二) 酸鹼度…………………………………………………………………………44
(三) 營養條件………………………………………………………………………44
肆、結果………………………………………………………………………………46
一、Arthrobotrys oligospora 對Rhizoctonia solani 超寄生現象之觀察…………46
二、A. olgospora 培養濾液內胞壁分解活性之生物檢測…………………………46
三、不同培養時期的胞壁分解酵素…………………………………………………47
四、不同培養基質對 A. oligospora 分泌胞壁分解酵素的影響…………………49
五、A. oligospora 培養濾液之蛋白質電泳分析……………………………………50
六、活體上微量物質之定位與分析…………………………………………………52
七、環境條件對A. oligospora 超寄生能力的影響………………………………56
(一) 溫度對 A. oligospora 生長分支及超寄生能力之影響…………………… 56
(二) 酸鹼值 A. oligospora 生長分支及超寄生能力之影響…………………… 56
(三) 碳氮比A. oligospora 生長分支及超寄生能力之影響………………………56
(四)碳素源A. oligospora 生長分支及超寄生能力之影響……………………… 56
(五) 葡萄糖對 A. oligospora 超寄生能力之迴饋抑制…………………………57
(六) 氮素源A. oligospora 生長分支及超寄生能力之影響………………………57
(七) 線蟲的存在對 A. oligospora 超寄生能力之影響…………………………58
八、影響 A. oligospora 分化產生線圈狀纏繞構造的因子………………………58
(一) 氨基酸的影響…………………………………………………………………58
(二) 離子的影響……………………………………………………………………59
伍、 討論……………………………………………………………………………………60
一、Arthrobotrys oligospora 胞外分解酵素的分析………………………………60
(一) Rhizoctonia solani 細胞壁的分解酵素……………………………………… 60
(二) A. oligospora 不同生長階段下酵素活性的消長…………………………… 61
(三) 胞壁分解酵素之誘導與抑制…………………………………………………62
(四) A. oligospora 胞外分解酵素之電泳分析…………………………………… 64
二、活體上微量物質之定位與分析……………………………………………… 65
三 A. oligospora 所分泌之胞外分解酵素在超寄生過程中扮演的角色…………67
四、環境因子對超寄生現象的影響……………………………………………… 68
(一) 溫度……………………………………………………………………………68
(二) pH 值………………………………………………………………………… 68
(三) 碳氮比…………………………………………………………………………69
(四) 碳素源…………………………………………………………………………69
(五) 氮素源…………………………………………………………………………70
(六) 線蟲的存在……………………………………………………………………71
五、影響 A. oligospora 形態分化的因子…………………………………………72
(一) 物理因子………………………………………………………………………72
(二) 化學因子………………………………………………………………………72
中文摘要…………………………………………………………………………… 75
英文摘要…………………………………………………………………………… 77
圖…………………………………………………………………………………… 79
表……………………………………………………………………………………102
附錄…………………………………………………………………………………108
陸、參考文獻………………………………………………………………………113
參考文獻

1. 郭克忠1998. 植物真菌病原之初期侵染行為. 植物保護學會會刊40:1-23.
2. Allen, E. A., Hazen, B. E., Hoch, H. C., Kwon, Y., Leinhos, G. M. E., Staples, R. C., Stumpf, M. A., and Terhune, B. T. 1991. Appressorium formation in response to topographical signals by 27 rust species. Phytopathology 81:323-331.
3. Ann, P. J., and Ko, W. H. 1989. Survey of enzyme activity on solid media in Phytophthora. Can. J. Bot. 68:139-143.
4. Barak, R., Elad, Y., Mirelman, D., and Chet, I. 1985. Lectins: A possible basis for specific recognition in the interaction of Trichoderma and Sclerotium rolfsii. Phytopathology 75:458-462.
5. Barnett, H. L., and Binder, F. L. 1973. The fungal host-parasite relationship. Annu. Rev. Phytopathol. 11:273-292.
6. Barnett, H. L., and Lilly, V. G. 1962. A destructive mycoparasite, Gliocladium roseum. Mycologia 54:72-77.
7. Benyagoub, M., Jabaji-Hare, S. H., Chamberland, H., and Charest, P. M. 1996. Cytochemical and immunocytochemical investigation of the mycoparasitic interaction between Stachybotrys elegans and its host Rhizoctonia solani (AG-3). Mycol. Res. 100:79-86.
8. Berry, C. R. 1959. Factors affecting parasitism of Piptocephalis virginiana on other Mucorales. Mycologia 51:824-832.
9. Butler, E. E. 1957. Rhizoctonia solani as a parasite of fungi. Mycologia 49:354-373.
10. Carsolio, C., Gutierrez, A., Jimenez, B., Montagu, M. V., and Herrera-Estrella, A. 1994. Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc. Natl. Acad. Sci. USA 91:10903-10907.
11. Cherif, M., and Benhamou, N. 1990. Cytochemical aspects of chitin breakdown during the parasitic action of a Trichoderma sp. on Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology. 80:1406-1414.
12. Chiu, S. C., and Tzean, S. S. 1995. Glucanolytic enzyme production by Schizophyllum commune Fr. during mycoparasitism. Physiol. Mol. Plant Pathol. 46:83-94.
13. de la Cruz, J., Hidalgo-Gallego, A., Lora, J. M., Benitez, T., Pintor-Toro, J. A., and Llobell, A. 1992. Isolation and characterization of three chitinases from Trichoderma harzianum. J. Biochem. 206:859-867.
14. de la Cruz, J., Pintor-Toro, J. A., Benitez, T., and Llobell, A. 1995. Purification and characterization of an endo-β-1,6-glucanase from Trichoderma harzianum that is related to its mycoparasitism. J. Bacteriol. 177:1864-1871.
15. de la Cruz, J., Pintor-Toro, J. A., Benitez, T., Llobell, A., and Romero, L. C. 1995. A novel endo-β-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum. J. Bacteriol. 177:6937-6945.
16. de la Cruz, J., Rey, M., Lora, J. M., Hidalgo-Gallego, A., Dominguez, F., Pintor-Toro, J. A., Llobell, A., and Benitez, T. 1993. Carbon source control on β-glucanases, chitobiase and chitinase from Trichoderma harzianum. Arch. Microbiol. 159:316-322.
17. de Vries, O. M. H., and Wessels, J. G. H. 1972. Release of protoplasts from Schizophyllum commune by a lytic enzyme preparation from Trichoderma viride. J. Gen. Microbiol. 73:13-22.
18. de Vries, O. M. H., and Wessels, J. G. H. 1973. Release of protoplasts from Schizophyllum commune by combined action of purified α-1,3-glucanase and chitinase derived from Trichoderma viride. J. Gen. Microbiol. 76:319-330.
19. Di Pietro, A., Lorito, M., Hayes, C. K., Broadway, R. M., and Harman, G. E. 1993. Endochitinase from Gliocladium virens: Isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308-313.
20. Elad, Y., Barak, R., and Chet, I. 1983. Possible role of lectins in mycoparasitism. J. Bacteriol. 154:1431-1435.
21. Elad, Y., Chet, I., Boyle, P., and Henis, Y. 1983. Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii-Scanning electron microscopy and fluorescence microscopy. Phytopathology 73:85-88.
22. Elad, Y., Chet, I., and Henis, Y. 1982. Degradation of plant pathogenic fungi by Trichoderma harzianum. Can. J. Microbiol. 28:719-725.
23. Elad, Y., Lifshitz, R, and Baker, R. 1985. Enzymatic activity of the mycoparasite Pythium nunn during interaction with host and non-host fungi. Physiol. Plant Pathol. 27:131-148.
24. Flores, A., Chet, I., and Herrera-Estrella, A. 1997. Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1. Curr. Genet. 31:30-37.
25. French, R. C. 1992. Volatile chemical germination stimulators of rust and other fungal spores. Mycologia 84:277-288.
26. Geypens, M. 1977. In vitro measurements of antagonism of Trichoderma spp. against Rhizoctonia solani and significance of nutritional factors. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 42, 997-1007.
27. Goettel, M. S., Leger, R. J. ST., Rizzo, N. W., Staples, R. C., and Roberts, D. W. 1989. Ultrastructural localization of a cuticle-degrading protease produced by the entomopathogenic fungus Metarhizium anisopliae during penetration of host (Manduca sexta) cuticle. J. Gen. Microbiol. 135:2233-2239.
28. Griffin, D. H. 1993. Fungal Physiology. 2nd ed. Wiley-Liss, Inc.
29. Griffith, N. T., and Barnett, H. L. 1967. Mycoparasitism by Basidiomycetes in culture. Mycologia 59:149-154.
30. Haskins, R. H. 1963. Morphology, nutrition, and host range of a speccies of Pythium. Can. J. Microbiol. 9:451-457.
31. Hayes, C. K., Klemsdal, S., Lorito, M., Di Pietro, A., Peterbauer, C., Nakas, J. P., Tronsmo, A., and Harman, G. E. 1994. Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma harzianum. Gene 138:143-148.
32. Hoch, H. C. 1987. Chemically induced appressoria in Uromyces appendiculatus are formed aerially, apart from the substrate. Mycologia 79:418-424.
33. Hoch, H. C. 1977. Mycoparasitic relationships: Gonatobotrys simplex parasitic on Alternaria tenuis. Phytopathology 67:309-314.
34. Hoch, H. C. 1978. Mycoparasitic relationships. IV. Stephanoma phaeospora parasitic on a species of Fusarium. Mycologia 70:370-379.
35. Hoch, H. C., and Staples, R. C. 1984. Evidence that cAMP initiates nuclear division and infection structure formation in the bean rust fungus, Uromyces phaseoli. Exp. Mycol. 8:37-46.
36. Hoch, H. C., Staples, R. C., Whitehead, B., Comeau, J., and Wolf, E. D. 1987. Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235:1659-1662.
37. Huang, H. C., and Kokko, E. G. 1987. Ultrastructure of hyperparasitism of Coniothyrium minitans on sclerotia of Sclerotinia sclerotiorum. Can. J. Bot. 65:2483-2489.
38. Inbar, J., and Chet, I. 1994. A newly isolated lectin from the plant pathogenic fungus Sclerotium rolfsii: purification, characterization and role in mycoparasitism. Microbiol. 140:651-657.
39. Inbar, J., and Chet, I. 1992. Biomimics of fungal cell-cell recognition by use of lectin-coated nylon fibers. J. Bacteriol. 174:1055-1059.
40. Inbar, J., and Chet, I. 1995. The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum. Microbiol. 141:2823-2829.
41. Jeffries, P., and Young, T. W. K. 1994. Interfungal parasitic relationships. CABI.
42. Jones, D., Farmer, V. C., Bacon, J. S. D., and Wilson, M. J. 1972. Components of cell walls of certain plant pathogenic fungi. Trans. Brit. Mycol. Soc. 59:11-23.
43. Kaminskyj, S. G. W., and Day, A. W. 1984. Chemical induction of infection structures in rust fungi. II. Inorganic ions. Exp. Mycol. 8:193-201.
44. Kellens, J. T. C., Allen, A. K., and Peumans, W. 1989. Isolation and characterization of lectins from Rhizoctonia crocorum and Athelia rolfsii. J. Gen. Microbiol. 135:3127-3132.
45. Krause, D. R., Wood, C. J., and Maclean, D. J. 1991. Glucoamylase (exo-1,4-β-D-glucan glucanohydrolase, EC 3.2.1.3) is the major starch-degrading enzyme secreted by the phytopathogenic fungus Colletotrichum gloeosporioides. J. Gen. Microbiol. 137:2463-2468.
46. Kuyama, S., and Pramer, D. 1962. Purification and properties of a protein having nemin activity. Biochim. Biophys. Acta 56:631-632.
47. Kwon, Y. H., and Hoch, H. C. 1991. Initiation of appressorium formation in Uromyces appendiculatus: organization of the apex, and the responses involving microtubules and apical vesicles. Can. J. Bot. 69:2560-2573.
48. Lewis, J. A. and Papavizas, G. C. 1985. Effect of mycelial preparations of Trichoderma and Gliocladium on populations of Rhizoctonia solani and the incidence of damping-off. Phytopathology 75:812-817.
49. Lorito, M., Harman, G. E., Hayes, C. K., Broadway, R. M., Tronsmo, A., Woo, S. L., and Di Pietro, A. 1993. Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83:302-307.
50. Lorito, M., Hayes, C. K., Di Pietro, A., and Harman, G. E. 1993. Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr. Genet. 24:349-356.
51. Lorito, M., Hayes, C. K., Di Pietro, A., Woo, S. L., and Harman, G. E. 1994. Purification, characterization, and synergistic activity of a glucan 1,3-β-glucosidase and an N-acetyl-β-glucosaminidase from Trichoderma harzianum. Phytopathology 84:398-405.
52. Lutchmeah, R. S. and Cooke, R. C. 1984. Aspects of antagonism by the mycoparasite Pythium oligandrum. Trans. Brit. Mycol. Soc. 83:696-700.
53. Lysek, G., and Nordbring-Hertz, B. 1981. An endogenous rhythm of trap formation in the nematophagous fungus Arthrobotrys oligospora. Planta 152:50-53.
54. Macko, V., Renwick, J. A. A., and Rissler, J. F. 1978. Acrolein induces differentiation of infection structures in the wheat stem rust fungus. Science 199:442-443.
55. Moore-Landecker, E. 1996. Fundamentals of the Fungi. 4th ed. Prentice-Hall, International Inc.
56. Muthukumar, G., Jensen, E. C., Nickerson, A. W., Eckles, M. K., and Nickerson K. W. 1991. Photomorphogenesis in Penicillium isariaeforme: Exogenous calcium substitutes for light. Photochem. Photobiol. 53:287-291.
57. Nordbring-Hertz, B. 1968. The influence of medium composition and additions of animal origin on the formation of capture organs in Arthrobotrys oligospora. Physiol. Plant. 21:52-65.
58. Nordbring-Hertz, B. 1973. Peptide-induced morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. Physiol. Plant. 29:223-233.
59. Nordbring-Hertz, B., and Brinck, C. 1974. Qualitative characterization of some peptides inducing morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. Physiol. Plant. 31:59-63.
60. Nordbring-Hertz, B., Neumeister, H., Sjollema, K., and Veenhuis, M. 1995. A conidial trap-forming mutant of Arthrobotrys oligospora. Mycol. Res. 99:1395-1398.
61. Olsson, S., and Persson, Y. 1994. Transfer of phosphorus from Rhizoctonia solani to the mycoparasite Arthrobotrys oligospora. Mycol. Res. 98:1065-1068.
62. Persson, Y., and Baath, E. 1992. Quantification of mycoparasitism by the nematode-trapping fungus Arthrobotrys oligospora on Rhizoctonia solani and the influence of nutrient levels. FEMS Microbiol. Ecol. 101:11-16.
63. Persson, Y., Nordbring-Hertz, B., and Chet, I. 1990. Effect of polyoxin D on morphogenesis of the nematode-trapping fungus Arthrobotrys oligospora. Mycol. Res. 94:196-200.
64. Pramer, D., and Kuyama, S. 1963. Symposium on biochemical bases of morphogenesis in fungi. II. Nemin and the nematode-trapping fungi. Bacteriol. Rev. 27:282-292.
65. Pramer, D., and Stoll, N. R. 1959. Nemin: a morphogenic substance causing trap formation by predaceous fungi. Science. 129:966-967.
66. Premachandran, D., and Pramer, D. 1984. Role of N-acetylgalactosamine-specific protein in trapping of nematodes by Arthrobotrys oligospora. Appl. Environ. Microbiol. 47:1358-1359.
67. Ridout, C. J., Coley-Smith, J. R., and Lynch, J. M. 1986. Enzyme activity and electrophoretic profile of extracellular protein induced in Trichoderma spp. by cell walls of Rhizoctonia solani. J. Gen. Microbiol. 132:2345-2352.
68. Ridout, C. J., Coley-Smith, J. R., and Lynch, J. M. 1987. Fractionation of extracellular enzymes from a mycoparasitic strain of Trichoderma harzianum. Enzyme Microb. Technol. 10:180-187.
69. Riou, C., Freyssinet, G., and Fevre, M. 1991. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 57:1478-1484.
70. Roberts, D. P., and Lumsden, R. D. 1990. Effect of extracellular Metabolites from Gliocladium virens on germination of sporangia and mycelial growth of Pythium ultimum. Phytopathology 80:461-465.
71. Rosen, S., Ek, B., Rask, L., and Tunlid, A. 1992. Purification and characterization of a surface lectin from the nematode-trapping fungus Arthrobotrys oligospora. J. Gen. Microbiol. 138:2663-2672.
72. Sivan, A., and Chet, I. 1989. Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum. J. Gen. Microbiol. 135:675-682.
73. Slifkin, M. K. 1963. Parasitism of Olpidiopsis incrassata on members of the Saprolegniaceae. II. Effect of pH and host nutrition. Mycologia 55:172-182.
74. Staples, R. C., Grambow, H.-J., and Hoch, H. C. 1983. Potassium ion induceds rust fungi to develop infection structures. Exp. Mycol. 7:40-46.
75. St. Leger, R. J., Joshi, L., Bidochka, M. J., Rizzo, N. W., and Roberts, D. W. 1996. Characterization and ultrastructural localization of chitinases from Metarhizium anisopliae, M. flavoviride, and Beauveria bassiana during fungal invasion of host (Manduca sexta) cuticle. Appl. Environ. Microbiol. 62:907-912.
76. Tangarone, B., Royer, J. C., and Nakas, J. P. 1989. Purification and characterization of an endo-(1,3)-β-D-glucanase from Trichoderma longibrachiatum. Appl. Environ. Microbiol. 55:177-184.
77. Tronsmo, A., and Harman, E. 1993. Detection and Quantification of N-acetyl-β-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. Anal. Biochem. 208:74-79.
78. Tu, J. C. 1980. Gliocladium virens, a destructive mycoparasite of Sclerotinia sclerotiorum. Phytopathology 70:670-674.
79. Tunlid, A., Jansson, H.-B., and Nordbring-Hertz, B. 1992. Fungal attachment to nematodes. Mycol. Res. 96:401-412.
80. Tunlid, A., and Jansson, S. 1991. Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora. Appl. Environ. Microbiol. 57:2868-2872.
81. Tweddell, R. J., Jabaji-Hare, S. H., and Charest, P. M. 1994. Production of chitinases and β-1,3-glucanases by Stachybotrys elegans, a mycoparasite of Rhizoctonia solani. Appl. Environ. Microbiol. 60:489-495.
82. Tzean, S. S., and Estey, R. H. 1991. Geotrichopsis mycoparasitica gen. et sp. nov. (Hyphomycetes), a new mycoparasite. Mycol. Res. 95:1350-1354.
83. Tzean, S. S., and Estey, R. H. 1978. Nematode-trapping fungi as mycopathogens. Phytopathology 68:1266-1270.
84. van Tilburg, A.-U. B., and Thomas, M. D. 1993. Production of extracellular proteins by the biocontrol fungus Gliocladium virens. Appl. Environ. Microbiol. 59:236-242.
85. Whaley, J. W. and Barnett, H. L. 1963. Parasitism and nutrition of Gonatobotrys simplex. Mycologia 55:199-210.
86. Watkinson, S. C. 1977. Effect of amino acids on coremium development in Penicillium claviforme. J. Gen. Microbiol. 101:269-275.
87. Wessels, J. G. H., and Niederpruem, J. 1967. Role of a cell-wall glucan-degrading enzyme in mating of Schizophyllum commune. J. Bacteriol. 94:1594-1602.
88. Winkler, E. J., Kuyama, S., and Pramer, D. 1961. A nemin assay procedure. Nature 191:155-156.
89. Xiao, J.-Z., Watanabe, T., Kamakura, T., Ohshima, A., and Yamaguchi, I. 1994. Studies on cellular differentiation of Magnaporthe grisea. Physicochemical aspects of substratum surfaces in relation to appressorium formation. Physiol. Mol. Plant Pathol. 44:227-236.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top