跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柳文成
研究生(外文):Liu, Wen-Cheng
論文名稱:感潮河系之水理與水質動態傳輸模擬研究
論文名稱(外文):Modelung Study on Dynamic Transport of Hydrodynamic and Water Quality in Tidal Estuarine System
指導教授:許銘熙許銘熙引用關係
指導教授(外文):Hsu, Ming-Hsi
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農業工程學研究所
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:87
語文別:中文
論文頁數:272
中文關鍵詞:水理與水質河口環流鹽分分佈主支流匯流模式檢定與驗證模式應用數值模擬
外文關鍵詞:hydrodynamics and water qualityestuarine circulationsalinity distributionconfluence of mainstem and tributariesmodel calibration and verificationmodel applicationnumerical simulation
相關次數:
  • 被引用被引用:26
  • 點閱點閱:642
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
河口及感潮河段為河川流域及近岸海洋水與物質交換必經之通道,所以對於此一河段水理狀況之瞭解是預測污染物質自陸地上排放或沖刷至河川後擴散傳輸至海洋的必要條件之一。本文研究對象為河口之重要水理現象,包括潮流、河道流、河口環流以及促成河口環流且又受河口環流影響之鹽分分佈及水質動態傳輸狀況。
本文主要目的為發展一涵蓋主、支流匯流之感潮河系及河口之垂直二維水理與水質動態傳輸模式,模式中不僅可以涵括各種動力因素,並可考慮河川幾何形狀之變化,對於主、支流交匯處則利用連續方程式、動量平衡及質量平衡方程式加以處理。
模式建立後,將數值模式應用於淡水河複雜河系,包括淡水河系三大支流大漢溪、新店溪及基隆河。本文以理論分析及數值模擬探討淡水河系之潮汐及河口環流之特性,並以現場實測資料來檢定與驗證數值模式之正確性與適用性,檢定及驗證之參數有曼寧係數、紊流擴散係數及水質動態傳輸模式求解各水質變數中之參數。
模式經過檢定與驗證後,將模式應用於探討有、無關渡防潮堤防下之淡水河系及河口濕地潮流及鹽分分佈情形,及上游不同淡水流量狀況下,廢污水截除前後之鹽分分佈。在水質方面,將模式應用於探討不同河川流量下,廢污水截除前後對淡水河系水質狀況之影響,可作為環境規劃與管理之參考依據。
The estuary, together with the tidal freshwater river upstream of it, is the pathway for exchange of water and materials between its drainage basin and coastal ocean. To predict the fate and transport of materials from land to ocean, it is essential to understand the hydrodynamic characteristics of this stretch of the river. This study investigates the major components of water movement in the estuarine system : tidal flow, freshwater river flow and estuarine (or residual) circulation. The longitudinal and vertical salinity distributions are also investigated as a forcing function of, as well as a response to, the estuarine circulation.
The purposes of this study are to develop a vertical two-dimensional numerical model which includes the capability to model tributaries and to study the hydrodynamic and water quality characteristics of estuarine system. The hydrodynamic model is based on the principles of conservation of volume, momentum and mass, and the water quality model on the conservation of mass alone. The flow conditions at the confluences of mainstem and tributaries are solved by expanded continuity, momentum and mass-balance equations.
After model development, the numerical model is applied to investigate the Tanshui River system, the largest estuarine system in Taiwan with drainage basin including the capital city of Taipei. It consists of three major tributaries : the Tahan Stream, Hsintien Stream and Keelung River. The study investigates the hydrodynamic characteristics of the tidal reaches of the river system by means of theoretical analysis and numerical simulation. The model is calibrated and verified with observational field data. The calibrated and verified parameters include Manning* friction coefficient, the coefficients in turbulence diffusion terms and the coefficients of eight-water quality state variables.
As examples of model utilities, the calibrated and verified model is used to investigate the tidal flow and salinity conditions in the Tanshui estuarine system and its estuarine wetland under the conditions with and without Kuan-Du dike. The model is also used to compute the salinity distributions and to predict future water quality conditions under several scenarios of wastewater diversion and under various hydrological conditions. The results show that the model has potential for more general diagnostic applications and prediction of pollutant transport and fate. It also can be used as an aid for making waste load allocations, management decisions and environmental impact analyses.
目 錄
頁 次
謝誌i
中文摘要ii
英文摘要iii
目錄v
表目錄viii
圖目錄x
第一章 導論1
1-1 前言 1
1-2 過去相關研究2
1-2-1 有關水理方面之研究2
1-2-2 有關水質方面之研究5
1-3 研究目的7
第二章 水理與水質數值模式9
2-1 水理動態傳輸模式9
2-1-1 基本方程式9
2-1-2 邊界條件11
2-1-3 紊流閉合模式15
2-1-4 模式解法17
2-1-5 主支流匯流處理19
2-1-6 壓力梯度22
2-1-7 穩定性條件 23
2-2 水質動態傳輸模式23
2-2-1 基本方程式23
2-2-2 邊界條件31
2-2-3 匯流處水質濃度之質量平衡方程式32
第三章 流域基本資料蒐集與分析33
3-1 流域概況33
3-2 水理與水質基本資料之蒐集與整理34
3-3 實測潮位資料之分析34
3-3-1 資料之篩選34
3-3-2 潮位調和分析35
3-3-3 平均潮差及潮波傳播36
3-4 全潮測量流速及鹽分數據分析37
第四章 水理模式之檢定及驗證38
4-1 幾何形狀及上下游邊界條件38
4-2 模式對潮汐模擬之檢定 38
4-2-1 潮之檢定39
4-2-2 綜合潮之檢定40
4-3 模式驗證41
第五章 鹽分入侵之檢定及驗證44
5-1 利用觀測值進行模式之檢定與驗證44
5-1-1 模式之檢定44
5-1-2 模式之驗證46
5-2 河口環流之理論驗證 47
5-2-1 理論值47
5-2-2 模擬結果48
5-2-3 實測數據49
第六章 水質模式之檢定與驗證51
6-1 淡水河系污染量之推估51
6-1-1 集水區之劃分 51
6-1-2 天然側流量51
6-1-3 污染負荷之推估52
6-2 上游河川流量與水質濃度之迴歸分析52
6-3 模式之檢定53
6-4 模式之驗證54
第七章 數值模式之應用56
7-1 潮流 56
7-1-1 平均河川流量與低流量情形下之潮汐狀況56
7-1-2 關渡防潮堤防之影響57
7-2 鹽分分佈57
7-2-1 河口濕地鹽分之數值模擬 57
7-2-2 廢污水截除前後鹽分分佈模擬60
7-2-2.1 廢污水截除前平均流量下鹽分模擬60
7-2-2.2 流量下廢污水截除前鹽分模擬60
7-2-2.3 流量下廢污水截除前鹽分模擬61
7-3 水質62
7-3-1 廢污水截除前後平均流量下之水質模擬 63
7-3-2 廢污水截除前後 流量下之水質模擬63
第八章 結論與建議65
8-1 結論65
8-2 建議67
參考文獻69
附錄A 基本方程式之推導83
附錄B 有限差分方程式86
附錄C 理論解析解89
個人資料(學經歷簡述)269
著作270
(1) 台灣省水利局,「淡水河系長期水理觀測計畫各年度工作報告」,水利局第十工程處淡水河水理觀測隊。
(2) 許時雄,「淡水河下游感潮變量流之研究」,水利復刊第七期,(1969)。
(3) 行政院經濟合作委員會台北區衛生下水道規劃小組,「淡水河水系水污染及河川涵容能力」,(1971)。
(4) 台北地區衛生下水道工程處,「河川污染調查」,(1971)。
(5) 歐陽嶠暉,「淡水河水系水污染調查及河川自淨能力之研究」,台灣水利,第19卷3期,(1971)。
(6) 經濟部水資會,「淡水河水污染整治規劃報告及其附錄」,(1980)。
(7) 顏清連、許銘熙,「河川體系變量流之數值模擬」,台大土木工程學研究報告,水利7105,(1982)。
(8) 經濟部水資會,「淡水河流域河川水質數學模式之研究」,(1983)。
(9) 顏清連、王如意、朱紹鎔、許銘熙、呂建華、張守陽,「基隆河水理特性之研究」,水利7203,國立台灣大學土木工程學研究所,(1984)。
(10) 陳樹群,「河川動態水質數學模式之建立與應用」,碩士論文,國立台灣大學土木工程學研究所,(1984)。
(11) 宋長虹,「河海模式之初步研究」,碩士論文,國立成功大學水利及海洋工程研究所,(1985)。
(12) 李公哲、郭振泰、溫清光、李漢鏗、陳樹群、高正忠,「台灣地區河川水質模式應用現況及準則研擬之可行性研究」,行政院衛生署環境保護局委託計畫報告,(1985)。
(13) 陳聰智,「濁水溪洪水預報模式之研究」,碩士論文,國立成功大學水利及海洋工程研究所,(1986)。
(14) 溫清光等,「曾文溪流域水質規劃管理」,中國土木水利學會第一屆環境規劃與管理研討會論文集,(1988)。
(15) 連上堯,「枯水期基隆河水理與水質模式之研究」,碩士論文,國立台灣大學農業工程學研究所,(1988)。
(16) 洪政豐,「潮流對河川污染質影響之研究」,碩士論文,國立成功大學水利及海洋工程研究所,(1988)。
(17) 許銘熙、張尊國、柳文成、連上堯,「基隆河水理暨水質特性之研究(一)截流系統對河川水理之影響」,行政院國科會專題研究計畫報告,(1989)。
(18) 經濟部水資會,「淡水河水位站─獅子頭、土地公鼻站水位調和報告」,(1989)。
(19) 張瑞津、石再添,「淡水河下游感潮的研究」,地理學研究第13期,(1989)。
(20) 美商塞蒙斯李顧問工程公司,「基隆河流域性污染整治規劃報告」,行政院環保署委辦計畫報告,(1989)。
(21) 陳筱華,「河川污染特性及水質數學模式之探討─以基隆河為例」,碩士論文,國立台灣大學環境工程學研究所,(1989)。
(22) 許元郎,「網路渠道污染物傳輸模式之研究」,碩士論文,國立交通大學土木工程研究所,(1989)。
(23) 曾國柱,「河海水質模式之研究」,碩士論文,國立成功大學水利及海洋工程研究所,(1990)。
(24) 許銘熙、張尊國、柳文成、連上堯,「基隆河水理暨水質特性之研究(二)截流系統對河川水質之影響」,行政院國科會專題研究計畫報告,(1990)。
(25) 柳文成,「截流系統對基隆河水質影響之研究」,碩士論文,國立台灣大學農業工程學研究所,(1990)。
(26) 李禎昌,「複雜河系水質模式之研究」,碩士論文,國立交通大學土木工程研究所,(1990)。
(27) 郭振泰、吳先琪、陳樹群、賴真甫,「河川毒性物質模式之研究(三)」,行政院國科會專題研究計畫報告,(1990)。
(28) 美商塞蒙斯李顧問工程公司,「淡水河系污染整治規劃報告」,行政院環保署委辦計畫報告,(1990)。
(29) 李惠平,「河系點源與非點源污染傳輸之研究」,碩士論文,國立交通大學土木工程研究所,(1991)。
(30) 陳樹群、郭振泰等,「基隆河沈滓特性及其運動之模擬」,中國土木水利工程學刊,第三卷,第四期,pp321-332,(1991)。
(31) 經濟部水資會,「水資源整合性規劃模式之應用研究─淡水河流域水質管理」,(1992)。
(32) 郭振泰等,「基隆河整治對河川水質之影響」,國立台灣大學水工試驗所,(1992~1995)。
(33) 王順明,「基隆河水質監測站網之優選與模擬」,碩士論文,國立台灣大學環境工程學研究所,(1992)。
(34) 陳建維,「基隆河截彎取直對鹽分分佈影響之模擬」,碩士論文,國立台灣大學環境工程學研究所,(1994)。
(35) 中興工程顧問社,「淡水河系污染整治實施方案檢討」,行政院環保署委辦計畫報告,(1994a)。
(36) 中興工程顧問社,「淡水河系截流站、抽水站及排水幹渠水質水量檢測計畫」,行政院環保署委辦計畫報告,(1994b)。
(37) 李鴻源,「淡水河感潮特性之探討(二)」,國立台灣大學水工試驗所,(1995)。
(38) 鐘文祥,「基隆河之水質模擬與風險分析」,碩士論文, 國立台灣大學土木工程學研究所,(1995)。
(39) 何柏 州,「三維密度層河口污染物擴散模式之研究」,碩士論文, 國立台灣大學土木工程學研究所,(1996)。
(40) 林志翰,「排水網路變量流模式之研究及應用」,碩士論文,國立成功大學水利及海洋工程研究所,(1996)。
(41) 許銘熙、郭振泰、郭義雄、柳文成,「淡水河系潮流、河口環流與鹽分佈之研究(一)、(二)」,國立臺灣大學水工試驗所研究報告239及273號,(1996, 1997)。
(42) 許銘熙、郭義雄、郭振泰、柳文成,「淡水河感潮段垂直二維水理與水質動態傳輸模式(一)」,行政院國科會專題計畫研究成果報告,(1998)。
(43) 柳文成、許銘熙、郭義雄、郭振泰,「淡水河河口環流特性之研究」,台灣水利,第46卷第一期,pp. 33-42, (1998)。
(44) Bella, D. A. and W. E. Dobbins, 1968. Difference modeling of stream pollution. J. Sanit. Engrg. Div., ASCE, 94(SA5), 995-1016.
(45) Blumberg, A. F., 1975. A numerical investigation into the dynamics of estuarine circulation. Technical Report No. 91. Chesapeake Bay Institute, The Johns Hopkins Univ. 110pp.
(46) Bowden, K. F. and P. Hamilton, 1975. Some experiments with a numerical model of circulation and mixing in a tidal estuary. Estuarine and Coastal Marine Science, 3(3), 281-301.
(47) Blumberg, A. F., 1977. Numerical model of estuarine circulation. J. of the Hydraulic Division, ASCE, 103(HY3), 295-310.
(48) Bank, R. B. and F. F. Herrera, 1977. Effect of wind and rain on surface reaeration. J. of Environment Engineering Division, ASCE, 103(EE3), 489-504.
(49) Bowie, G. L., W. B. Mills, D. B. Porcella, C. L. Campbell, J. R. Pagenkopf, G. L. Rupp, K. M. Johnson, P. W. H. Chan, S. A. Gherini and C. E. Chamberlin, 1985. Rates, constants, and kinetics formulations in surface water quality modeling (second edition). EPA/600/3-85/040. Environmental Research Lab., Office of Research and Development, US Environmental Protection Agency (EPA), Athens, GA. 455pp.
(50) Blumberg, A. F., 1986. Turbulent mixing processes in lakes, reservoirs and impoundments. pp. 79-104. In: W. G. Gray (ed.), Physical-based Modeling of Lakes, Reservoirs, and Impoundments, ASCE.
(51) Camp, T. R., 1963. Water and its impurities. Reinhold Publishing Co., New York, NY.
(52) Cerco, C. F. and A. Y. Kuo, 1983. Water quality in a Virginia Potomac embayment: Hunting Creek - Cameron Run. Special Report in Applied Marine Science and Ocean Engineering (SRAMSOE) No. 244. VIMS, The College of William and Mary, VA. 202pp.
(53) Cerco, C. F., 1989. Measured and modeled effects of temperature, dissolved oxygen and nutrient concentration on sediment-water nutrient exchange. Hydrobiologia, 174, 185-194.
(54) Cheng, R. T. and P. E. Smith, 1990. A survey of three-dimensional numerical estuarine models. Estuarine and Coastal Modeling, M. L. Spaulding (ed.), ASCE, New York, N.Y., 1-15.
(55) Cerco, C. F. and T. M. Cole, 1993. Three-dimensional eutrophication model of Chesapeake Bay. J. Environ. Engrg., ASCE, 119(6), 1006-1025.
(56) Dobbins, W. E., 1964. BOD and oxygen relationship in streams. J. Sanit. Engrg. Div., ASCE, 90(SA3).
(57) Dresnack, R. and W. E. Dobbins, 1968. Numerical analysis of CBOD and DO profiles. J. Sanit. Engrg. Div., ASCE, 94(SA5).
(58) Dyer, K. R., 1973. Estuaries: a physical introduction. p. 140. J. Wiley & Sons, New York, NY, U.S.A.
(59) Dyer, K. R., 1977. Lateral circulation effects in estuaries. In Estuaries, Geophysics and the Environment, National Academic of Sciences, Washington.
(60) Dyer, K. R., 1989. Estuarine flow interaction with topography : lateral and longitudinal effects. p. 39-60. In: Neilson, Kuo, and Brubaker (eds.) Estuarine Circulation, Humana Press, Clifton, N.J.
(61) DiToro, D. M., P. R. Paquin, K. Subburamu, and D. A. Gruber, 1990. Sediment oxygen demand model: methane and ammonia oxidation. J. Environ. Engrg., ASCE, 116(5), 945-986.
(62) Dortch, M. S., 1990. Three-dimensional lagragian residual transport computed from an intratidal hydrodynamic model. Technical Report EL-90-11, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
(63) Delft Hydraulics, 1991. Tanshui river basin integrated analysis, national master plan for water resources management. Vol. 3, Final Report, Water Resources Planning Commission, Taiwan.
(64) DiToro, D. M. and J. J. Fitzpatrick, 1993. Chesapeake Bay sediment flux model. Contract Report EL-93-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS. 316pp.
(65) Elliot, A. J., 1976. A numerical model of the internal circulation in a branching tidal estuary. Special Report No. 54, Chesapeake Bay Institute, Johns Hopkins University.
(66) Elliott, A. J., 1978. Observations of the meteorological induced circulation in the Potomac Estuary. Estuarine and Coastal Marine Science, 6, 285-299.
(67) Edinger, J. E. and E. M. Buchak, 1980. Numerical hydrodynamics of estuaries. pp. 115-146. In: P. Hamilton and K.B. Macdonald (eds.), Estuarine and Wetland Processes with Emphasis on Modeling, Plenum Press.
(68) Environmental and Hydraulic Laboratories, 1986. CE-QUAL-W2: a numerical two-dimensional, lateral averaged model of hydrodynamics and water quality; user''s manual. Instruction Report E-86-5, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
(69) Fair, G. M., E. W. Moore, and H. A. Thomas, 1941. The natural purification of river muds and pollution sediments. Sewage Works J., Vol. 13, 270-307, 756-799, 1209-1228.
(70) Festa, J. F. and D.V. Hansen, 1976. A two-dimensional numerical model of estuarine circulation: the effects of alternating depth and river discharge. Estuarine and Coastal Marine Science, 4(3), 309-323.
(71) Fisher, H. B., E. J. List, J. Imberger, and N. H. Brooks, 1979. Mixing in inland and coastal waters. Academic Press, New York.
(72) Green, E. J. and D. E. Carritt, 1967. New tables for oxygen saturation of seawater. J. of Marine Research, 25(2), 140-147.
(73) Hansen, D. V. and M. Rattray, Jr. 1965. Gravitational circulation in straits and estuaries. J. Mar. Res. 23, 104-122.
(74) Hansen, D. V. and M. Rattray, Jr. 1966. New dimensions in estuarine classification. Limnol. and Oceanogr., 11, 319-326.
(75) Hasen, D. V., 1967. Salt balance and circulation in partially mixed estuaries. in Estuaries (ed. Lauff, G. H.) American Associate Advance Science.
(76) Haas, L.W., 1977. The effect of the neap-spring tidal cycle of the vertical salinity structure of the James, York, and Rappahannock Rivers, Virginia, USA. Estuarine and Coastal Marine Science, 5, 485-496.
(77) Hamrick, J. M., 1992. A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects. SRAMSOE #317, The College of William and Mary, VA,63 pp.
(78) Hsu, M. H., A. Y. Kuo, J. T. Kuo, and W. C. Liu, 1996. Modeling tidal hydraulic in a branched estuarine system. Tenth Congress of APD-IAHR.
(79) Hsu, M. H., A. Y. Kuo, J. T. Kuo, and W. C. Liu, 1998a. Procedure to calibrate and verify numerical models of estuarine hydrodynamics. Journal of Hydraulic Engineering, ASCE. (in press)
(80) Hsu, M. H., A. Y. Kuo, J. T. Kuo, and W. C. Liu, 1998b. Modeling estuarine hydrodynamics and salinity for wetland restoration. Journal of Environmental Science and Health, Part A, A33(5), 891-921.
(81) Hsu, M. H., A. Y. Kuo, W. C. Liu, and A. Y. Kuo, 1998c. Numerical simulation of circulation and salinity distribution in the Tanshui estuary. Proceedings of the National Science Council, Part A: Physical Science and Engineering. (in press)
(82) Hsu, M. H., A. Y. Kuo, W. C. Liu, and J. T. Kuo, 1998d. The salinity distribution in the Tanshui river system and its response to river discharge. Proceedings of Abstract and Papers (on CD-ROM) of the 3rd International Conference on Hydro-Science and -Engineering, Cottbus/Berlin, Germany.
(83) Ippen, A. T. and D. R. F. Harleman, 1966. Tidal dynamics in estuaries. p. 493-545. In: Ippen, A.T.(ed.), Estuary and Coastline Hydrodynamics, McGraw-Hill Book Co., Inc., New York, NY.
(84) Ianuiello, J. P., 1977. Tidally induced residual currents in estuaries of constant breadth and depth. J. of Marine Research, 35, 735-786.
(85) Johnson, B. H., K. W. Kim, R. H. Heath, H. L. Butler, and B. B. Hsich, 1991. User*s guide for a three-dimensional numerical hydrodynamics, salinity and temperature model of Chesapeake Bay. Technical Report HL-91-20, US Army Engineer Waterways Experiment.
(86) Kuo, A. Y., M. Nichols and J. Lewis, 1978. Modelling sediment movement in the turbidity maximum of and estuary. Bulletin 111. Virginia Water Resources Research Center, Virginia Polytechnic Institute and State Univ., Blacksburg, Va. 76pp.
(87) Kuo, A. Y., and B. J. Neilson, 1987. Hypoxia and salinity distributions in Virginia Estuaries. Estuaries, 10(4), 277-283.
(88) Kuo, A. Y., 1985. Water quality in Virginia Potomac embayment: aquia Creek. SRAMSOE No. 227, VIMS, The College of William and Mary, 169pp.
(89) Kuo, A. Y., R. J. Byrne, J. M. Brubaker, and J. H. Posenau, 1988. Vertical transport across and estuary front. In J. Dronkers and W. van Leussen (eds.), Physical Processes in Estuaries. Springer-Verlag, Berlin, 93-109.
(90) Kuo, A. Y., R. J. Byrne, P. V. Hyer, E. P. Ruzecki, and J. M. Burbaker, 1990a. Practical application of theory for tidal intrusion fronts. ASCE J. Waterway, Port, Coastal and Ocean Eng. 116(3), 341-361.
(91) Kuo, A. Y., J. M. Hamrick, and G. M. Sisson, 1990b. Persistence of residual currents in the James Estuary and its implication to mass transport. p. 398-401. In: R. Cheng (ed.), Residual Currents and Long-term Transport. Coastal and Estuarine Studies, 38. Springer-Verlag, Berlin.
(92) Kuo, A. Y., K. Park, and M. Z. Moustafa, 1991a. Spatial and temporal variabilities of hypoxia in the Rappahannock River, Virginia. Estuaries, 14(2), 113-121.
(93) Kuo, A. Y., B. J. Neilson, and K. Park, 1991b. A modelling study of water quality of the upper tidal Rappahannock River. SRAMSOE No. 314, VIMS, The College of William and Mary, 164pp.
(94) Kuo, A. Y., and K. Park, 1995. A framework for coupling shoals and shallow embayments with main channels in numerical modeling of coastal plain estuaries. Estuaries, Vol.18. No.2, 341-350.
(95) Leendertse, J. J., and S. K. Liu, 1975. A three-dimensional model for estuaries and coastal seas, Vol. II Aspects of computation. R-1764-OWRT, The Rand Corporation.
(96) Liu, S. K., and J. J. Leendertse, 1978. Multi-dimensional numerical modeling of estuaries and coastal seas. The Rand Corporation, Santa Monica, California.
(97) Liu, S. K., and J. J. Leendertse, 1979. A three-dimensional model for estuaries and coastal seas, Vol. VI Bristol bay simulation. R-2405-NOAA, The Rand Corporation.
(98) Leonard, B. P., 1979. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, Vol. 19, 59-98.
(99) Liu, C. C. K., J. T. Kuo and H. H. Chen, 1989. Water quality modelling of anaerobic reaches: waste load allocation for Keelung River in northern Taiwan. in Advances in Water Pollution Control, River Basin Management, IAWPRC, H. Laikari (editor), Pergamon Press, 159-166.
(100) Llanso, R. J., 1992. Effects of hypoxia on estuarine benthos: the lower Rappahannock River (Chesapeake Bay), a case study. Estuarine, Coastal and Shelf Science, 35, 491-515.
(101) Largier, J. L. (ed.) 1993. Estuarine fronts: hydrodynamics, sediment dynamics and ecology. Estuaries, 16(1). Symposium Papers from the 11th Biennial International Estuarine Research Conference. 159pp.
(102) Munk, W. H. and E. R. Anderson, 1948. Notes on a theory of the thermocline. J. of Marine Research, 7(3), 276-295.
(103) Mayer, L. M. and S. P. Gloss, 1980. Buffering of silica and phosphate in turbid river. Limnology and Oceanography, 25(1), 12-22.
(104) Muin M. and M. Spaulding, 1997a. Three-dimensional boundary-fitted circulation model. J. of Hydraulic Engineering, ASCE, 123(1), 2-12.
(105) Muin M. and M. Spaulding, 1997b. Application of three-dimensional boundary-fitted circulation model to Providence River. J. of Hydraulic Engineering, ASCE, 123(1), 13-20.
(106) Nichols, M. M., 1996. Response of coastal plain estuaries to episodic events in the Chesapeake Bay Region.
(107) O*Connor, D. J. and W. E. Dobbins, 1956. Mechanism of reaeration in natural streams. J. Sanit. Engrg. Div., ASCE, 82(SA6), 1-30.
(108) O*connor, D. J., 1960. Oxygen balance of an estuary. J. Sanit. Engrg. Div., ASCE, 86(SA3), 35-55.
(109) Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, and W. R. Boynton, 1984. Chesapeake Bay anoxia: origin, development and significance. Science, 223, 22-27.
(110) Pritchard, D. W., 1952. Estuarine hydrography. pp. 243-280. In: Advances in Geophysics, Vol. 1, Academic Press Inc. New York, NY.
(111) Pritchard, D. W., 1954. A study of the salt balance in a coast plain estuary. J. of Marine Research, 13(1), 133-144.
(112) Pritchard, D. W., 1956. The dynamic structure of a coastal plain estuary. J. of Marine Research, 15(1), 33-42.
(113) Perrells, P. A. J. and M. Karelse, 1981. A two-dimensional laterally averaged model for salt intrusion in estuaries. pp. 483-535. In: H.B. Fischer (ed.), Transport Models for Inland and Coastal Waters, Academic Press, Inc.
(114) Pritchard, D. W., 1989. Estuarine classification a help or a hindrance. pp. 1-38. In: Neilson, Kuo, and Brubaker (eds.), Humana Press, Clifton, NJ.
(115) Park, K. and A. Y. Kuo, 1993. A vertical two-dimensional model of estuarine hydrodynamics and water quality. Spec. Rep. App. Mar. Sci. and Ocean Eng. 321, Virginia Institute of Marine Science, Gloucester Pt., VA. 47 p.
(116) Park, K., A. Y. Kuo, J. Shen, J. M. Hamrick, 1995. A three-dimensional hydrodynamic-eutrophication model (HEM-3D) description of water quality and sediment process submodels. Special Report in Applied Marine Science and Ocean Engineering No. 327.
(117) Park, K. and A. Y. Kuo, 1996a. A numerical model study of hypoxia in the tidal Rappahannock River of Chesapeake Bay. Estuarine, Coastal and Shelf Science, 42, 563-581.
(118) Park, K. and A. Y. Kuo, 1996b. A multi-step computation scheme: decoupling kinetic processes from physical transport in water quality model. Water Research, 30(1), 2255-2264.
(119) Rossby, G. G. and R. B. Montgomery, 1935. The layer of frictional influence in wind and ocean currents. Paper in Physical Oceanography and Meteorology, 3(3), 1-101.
(120) Streeter, H. W. and E. B. Phelps, 1925. A study of the pollution and natural purification of the Ohio River. III: factors concerned in the phenomena of oxidation and reaeration. Bull. No. 146. U.S. Public Health Service.
(121) Simpson, J. H. and R. A. Nunes, 1981. The tidal intrusion front: an estuarine convergence zone. Estuarine Coastal and Shelf Science, 13, 257-266.
(122) Sheng, Y. P., 1986. A three-dimensional mathematical model of coastal, estuarine and lake currents using boundary-fitted grid. Report No. 585, A.R.A.P. Group Titan System, New Jersey, Princeton, NJ.
(123) Swanson, J. C., 1986. A three-dimensional numerical model system of coastal circulation and water quality. PhD dissertation, Univ. of Rhode Island, Kingston, R.I.
(124) Sandford, L. P., K. G. Sellner, and D. L. Breitburg, 1990. Covariability of dissolved oxygen with physical processes in summertime Chesapeake Bay. J. Marine Research, 48, 567-590.
(125) Thomann, R. V., 1963. Mathematical model for dissolved oxygen. J. Sanit. Engrg. Div., ASCE, 89(SA5).
(126) Tracor, Inc., 1971. Estuarine modeling: an assessment. EPA Water Pollution Control Research Series, 16070 DZV 02/71. 497pp.
(127) Thatcher, M. L. and D. R. F. Harleman, 1972. A mathematical model for the prediction of unsteady salinity intrusion in estuaries. Report No. 72-7. MIT, MA, 232pp.
(128) Talbot, J. W. and G. A. Talbot, 1974. Diffusion in shallow seas and in English coastal and estuarine water. Rapp. P.-v. Reun. Cons. Int. Explor. Mer., 167, 93-110.
(129) Thomann, R. V. and J. J. Fitzpatrick, 1982. Calibration and verification of a mathematical model of eutrophication of the Potomac Estuary. HydroQual, Inc. Final Report to Dept. of Environmental Services, Washington, D. C. 500pp.
(130) Thomann, R. V. and J. A. Muller, 1987. Principles of surface water quality modelling and control. Harperand Row Publishers, New York.
(131) Tetra Tech., 1993. User*s guide for the IRL/TC three-dimensional hydrodynamic and salinity model. Tetra Tech, Inc., Prepared for Florida Institute of Technology and St. Johns River Water Management District, Florida.
(132) Velz, C. J., 1938. Deoxygenation and reoxygenation. ASCE Trans., 560-572.
(133) Velz, C. J., 1947. Factors influencing self-purification and their relation to pollution abatement. Sewage Works J., 19(4), 629-644.
(134) Wezernak, C. T. and J. J. Gannon, 1968. Evaluation of nitrification in streams. J. Sanit. Engrg. Div. ASCE, 94(SA5), 883-895.
(135) Wild, Jr. H. E., C. N. Sawyer, and T. C. McMahon, 1971. Factors affecting nitrification kinetics. J. of Water Pollution Control Federation, 43(9), 1845-1854.
(136) Wang, D. and D. W. Kravitz, 1980. A semi-implicit two-dimensional model of estuarine circulation. J. of Physical Oceanography, 10(3), 441-454.
(137) Wang, K. H., 1998. Three-dimensional hydrodynamic and transport model. Lecture Note for the Workshop Organized by the National Center for High-Performance Computing.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top