(3.238.186.43) 您好!臺灣時間:2021/02/26 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳世楷
研究生(外文):ShihKai Chen
論文名稱:水稻田入滲試驗與數值模擬
論文名稱(外文):Experiment and Numerical Simulation on the Infiltration from Paddy Field
指導教授:劉振宇劉振宇引用關係
指導教授(外文):ChenWuing Liu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農業工程學研究所
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:216
中文關鍵詞:水稻田入滲數值模擬牛踏層
外文關鍵詞:Paddy FieldInfiltrationNumerical SimulationHard Pan
相關次數:
  • 被引用被引用:31
  • 點閱點閱:429
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
水稻田具有生產、生活及生態之三生公益功能,對環境保育貢獻極大,且因長期湛水灌溉為補注地下水重要來源。本研究選擇位於濁水溪沖積扇頂區(該地區之地下水層為非拘限含水層)之實驗水田區進行現地試驗,試驗可探討水田/乾田狀態下之入滲水力特性,作為地下水數值模式探討影響入滲影響因子與模擬試驗田區之地下水入滲、側流及推估地下水有效補注量之依據。
土壤成分分析顯示實驗田淺層土壤主要成分為坋質土,現場試驗藉由微型張力計及雙環入滲計之量測結果顯示,牛踏層位置介於翻耕過之泥濘層(厚約20cm)與底層非翻耕層之間。其厚度約為7.5cm,飽和水力傳導係數介於0.034~0.083cm/day。入滲垂向水流在牛踏層以下發展成為重力/非飽和流,而底層土壤之滲透性較佳,各土層飽和水力傳導係數約為牛踏層之20~30倍。現地實驗另顯示增加湛水深10cm及打破牛踏層分別可使入滲率增加1.47倍及3.68倍。一維垂直入滲模式SAWAH及三維數值模式FEMWATER經過現地觀測土壤水分張力及入滲量及之驗證後進行模擬,結果顯示牛踏層之有無為影響入滲率之主要因素,區域性水田入滲以垂向運動為主,側滲則明顯發生於乾濕邊界區,側滲比例隨著乾濕邊界長度、水田湛水面積及初始土壤水分含量不同而改變。模擬結果亦顯示乾田時期之水田因田面乾裂,致牛踏層遭受破壞,且入滲壓力水頭增加,造成入滲率可大幅提昇至20倍以上。研究成果除瞭解水田入滲至地下水之移動機制,垂直流與水平側向流動過程,並可以提供政府決策單位研擬水資源管理計劃所需,亦對其他從事相關研究提供完整之研究方法及步驟。
Flooded paddy field exhibits productive, ecological and environmental multi-functions. Since the paddy field has long term ponded with water, it becomes one of the major sources for groundwater recharge. The object of the study is to understand the detailed infiltration mechanisms in paddy field. Field experiments are conducted in Ten-Chung experimental paddy field located on top area of the Choushu-chi Alluvial Fan for the purpose of obtaining the hydraulic characteristics of infiltration in flooded/dry farm types. The data of soil characteristics and hydraulic parameters from experiment are used for verifying the numerical models. Then, through the simulations to identify the affect factors of vertical infiltration/lateral seepage processes and asses the amounts of groundwater recharge from paddy field''s infiltration.
Soil analysis shows that shallow soil of the experimental paddy field is consists mainly of the silt. By using the mini-tensionmeter and double-ring infiltration meter, the experimental results indicate that the least permeable layer is positioned at the interface of puddled topsoil and non-puddled subsoil, and the average thickness of this layer is 7.5cm with the saturated hydraulic conductivity ranging from 0.034 to 0.083cm/day. The vertically infiltrated flow is under saturated condition within the hard pan layer and becomes unsaturated in the subsoil below the hard pan layer. The hydraulic conductivity of the subsoil is 20~30 times more permeable than the hard pan layer. In-situ measurements also show that the breakage of hard pan is the effective method to increase the infiltration rate by 3.68 times. Raise of ponded water level can only increase the infiltration rate by 1.47 times.
The experimental data are applied to verify the numerical models, the 1-D model SAWAH and the 3-D model FEMWATER are then adopted to simulate and analyze the infiltration processes in various conditions, whether it is ponded with water or keep in dry farm type. According to the simulation results, the existent of plow sole is the major factor to decrease the infiltration rate. For regional flooded paddy field, the movement of infiltration water is mainly vertically downward in most area, The lateral movement is obviously occur on the wet to dry boundary. The ratio of lateral seepage depend on the length of wet to dry boundary, the area of flooded paddy field, and the different initial water content in flooded/dry farm soils. Simulation results also show that the cracks developed when paddy field in drainage condition will obviously increase the infiltration rate up to 20 times because of the breakage of hard pan and the increase of water pressure. It is suggested that the research results can elucidate the mechanisms of water movement from the paddy field and understand the processes of the vertical and horizontal flow within the unsaturated region. Which also can provide governmental agencies a scientific basis to promulgate policies concerning water resources management, and serve as a demonstration to the research and investigation of water management problems in paddy field areas.
封面
謝誌
中文摘要
英文摘要
目錄
圖目錄
表目錄
符號及因次說明
第一章、前言
1.1 緒論
1.2 研究動機及目的
第二章、文獻回顧
2.1 本省對於水田入滲量之研究
2.2 國外對於水田入滲量之研究
2.2 國外相關數學模式發展
第三章、模式理論與數值方法
3.1 水田入滲水流數學模式基本假設
3.2 水田一維垂直入滲模式
3.3.1 飽和土壤中水流
3.3.2 非飽和土壤中水流
3.2.3 母體通量位能
3.3 三維地下水流動模式理論
3.3.1 地下水流控制方程
3.3.2 數值方法
3.3.3 GMS模式處理流程
3.4 入滲經驗公式
3.5 牛踏層厚度及其飽和水力傳導係數量測理論
3.5.1 層狀土壤非飽和和流動形成之水力條件
3.5.2 層狀土壤飽和/非飽和流壓力分佈
第四章、現場試驗與實驗室分析
4.1 水田環境介紹
4.1.1 水田入滲土層剖面分析
4.1.2 水田之人為整田及耕作過程
4.2 實驗分析項目
4.2.1 現場量測部份
4.2.2 實驗室分析部份
4.3 實驗進行步驟與量測結果
4.3.1 水田剖面調查與土壤特性之量測
4.3.2 水田土層水分張力計量測
4.3.3 水田基本入滲率與泥濘層以下淺層土壤水分含量量測
4.3.4 牛踏層厚度及水力傳導係數之量測
4.3.5 泥濘層壓力之量測
4.3.6 水田充分降雨後土壤剖面水分量測
4.3.7 非牛踏層土壤k值量測
4.3.8 粒徑分佈統計分析探討牛踏層形成原因
4.3.9 水田增加入滲量研究
4.4 結語
第五章、水田入滲模式建立與影響入滲因子探討
5.1 入滲模式與經驗公式驗證
5.1.1 輸入參數及邊界條件
5.1.2 FEMWATER與SAWAH入滲模擬分析
5.1.3 經驗公式入滲推估與數值模擬之比較
5.2 影響水田垂向入滲補注因子探討
5.2.1 初始含水量及地下水位對入滲補注之影響
5.2.2 牛踏層對入滲影響之探討
5.2.3 與牛踏層相接底層土壤對入滲之影響
5.2.4 低滲透性土層於多層土壤入滲機制之主探性研究
5.3 三維水田入滲/側滲模擬
5.3.1 入滲模擬
5.3.2 側向滲漏分析
5.3.3 地層土壤垂向/側向流況探討
5.3.4 側滲影響下之地下水補注量
5.3.5 入滲水流之側滲比例分析
5.4 水田田面開裂入滲模擬
5.4.1 水田開裂現象分析
5.4.2 水田開裂模式建立
5.4.3 模擬結果分析
第六章、綜合討論
6.1 垂向入滲影響因子綜合討論
6.2 水田入滲水分側滲分析
6.3 水田在湛水/乾田狀態下之入滲
6.4 水田入滲流況討論
6.5 水田超量灌慨及休耕期水田蓄水之討論
6.6 水田入滲補注/灌慨用水比例探討
6.7 水利會轄區水田外農地之地下水補注分析
第七章、結論與建議
7.1 結論
7.2 建議
參考文獻
附錄A 台灣水田淺層土壤剖面圖說
附錄B 田中實驗水田區現地試驗及實驗室分析圖說
附錄C 田中實驗水田區淺層土壤物理性質與水力特性實驗室分析結果
附錄D 非飽和力傳導係數實驗方法─懸架法
附錄E 三維FEMWATER數值模式輸入之田中實驗水田區土層水力特性曲線
附錄F 雲林水利會上新小組81年度水收支平衡記錄
簡歷
其他
1. 陳尚﹑李德滋﹐1964﹐"以土壤水分當量推算水稻灌溉需水量之研究"﹐農工學報第10卷第4期﹐pp15-40。
2. 陳尚﹐1980﹐"水稻田在水土資源保育上之功用與影響問題之研究"﹐農業用水內部水量調整問題之研究﹐p1101-1178﹐農業工程研究中心。
3. 中國農業工程學會﹐1990﹐"中國農業工程手冊-農業水利之部:灌溉﹑墾殖﹑管理"。
4. 蔡明華﹐1993﹐"水田灌溉公益效能剖析研究"﹐行政院農委會﹐pp1-62。
5. 蔡明華﹑林永德﹐1994﹐"因應加入GATT之能業對策研究 - 水稻田生態環境保護對策"﹐水資源經營管理研討會﹐台北市﹐pp123-137。
6. 曹以松,林俊男等,1987,財團法人農業工程研究中心研究報告"集集共同引水計畫-人工補注技術即可行性實施計畫" , pp52 -99。
7. 集集共同引水計畫可行性規劃(二)水源及用水專題,1989,7A地下水補注試驗研究-超量灌溉(續辦),中美經濟社會發展基金會。
8. 馮秋霞﹑許榮庭﹑李振誥﹐1997﹐"嘉南地區水田灌溉對地下水補注影響之評估"﹐第二屆地下水資源及水質保護研討會論文集﹐pp473-484。
9. 台灣省彰化農田水利會,水田及旱作灌溉用水計畫與實際取水量記錄表,1993-1997。
10. 台灣省雲林農田水利會﹐1993﹐"興水利農源流長"。
11. 財團法人台北市七星農田水利研究發展基金會及財團法人農業工程研究中心,1998,農田水利教材-水田灌溉。
12. 黃山內,1991,"台灣耕地土壤污染與映盤改善工作之檢討" ,農田水利,第三十八卷第五期,pp43-49。
13. 國立中興大學土壤調查試驗中心﹐1991﹐"土壤管理手冊" ﹐pp250-263。
14. 謝兆申,王明果,1991,台灣地區主要土類圖輯,行政院農委會。
15. 張森富,1996,桃園地區稻作機械化發展對灌溉系統演變影響之研究,財團法人桃園農田水利研究發展基金會。
16. 劉振宇﹑陳世楷﹐1996~1998﹐"台西至麥寮地區砂泥互層地下水流之研究(I)~(III)"﹐行政院國家科學委員會專題研究計畫成果報告。
17. 賈儀平﹑盧詩丁﹑王原賢﹐1996﹐"濁水溪沖積扇南翼之水文地質架構"﹐濁水溪沖積扇地下水及水文地質研討會論文集﹐pp113-125。
18. 台灣省水利處﹐1996﹐"水稻田生態環境保護規劃及示範﹐子題:水稻田對地下水補注供能評估分級"。
19. 劉振宇等﹐1998﹐"增加水田地下水涵養補注方之評及非灌區地下水補注功能分級之初探" ﹐台灣省水利處。
20. 鄒褘、葉一隆及王裕民,1998,休耕水稻田蓄水對地下水涵養補注之影響-以彰化田中休耕示範田為例,第九屆水利工程研討會,ppG173~179。
21. 吳瑞賢、林癸妙,1998,回歸水對水田灌溉用水量之影響評析,行政院農委會。
22. 丁澈士等,1997,農業灌溉用水對地下水補注影響之調查評估(I):水稻灌溉部份研究,財團法人曹公農業水利研究發展基金會。
23. 千田勝己,徐玉標,1973,台灣省黏質水田土壤之乾燥收縮與龜裂之研究,農業工程學報19卷1期,pp28。
24. 施嘉昌,徐玉標,曹以松,甘俊二,"灌溉排水原理",國立編譯館主編。
25. 施嘉昌,1980,水稻清濁水淹浸損失試驗研究總報告,農業工程學報26卷2期。
26. 施嘉昌,1988,排水工程,國立編譯館。
27. 台灣省水利處﹐1997﹐"濁水溪沖積扇扇頂平原地區地表垂向補注量",台灣大學土木工程學系。
28. Adachi, K., 1990, "Effects of rice-soil puddling on water percolation." In: Proceedings of the 14th International Congress of Soil Science, 12-18 August 1990, Kyoto, Japan, Vol. I. ISSS, Kyoto, Japan, pp.146-151
29. Angus, J.F., and H.G. Zandstra,1980."Climatic factors and the modelung of rice growth and yield",pp189-190 in Priceedings of the WMO-IRRI symposium on Agrometeorology of the rice crop,Los Banos,Philippines.
30. Belmans, C., J.G. Wesseling and R.A. Feddes, 1983. "Simulation Model of the Water Balance of A Cropped Soil: SWATRE.", Journal of Hydrology 63: pp271-286.
31. Bolton,F.R. and H.G. Zandstra, 1981."A soil moisture based yield model of wetland rainfed rice.",IRRI Research Paper 62. IRRI, Los Banos, Philippines.
32. Driessen, P.M., 1986. "The Water Balance of the Soil." In: H. van Keulen and J. Wolf Eds., Modeling of Agricultural Production: weather, soil and crops. Simulation Monographs, Pudoc, Wageningen, pp76-116.
33. Dirksen, C., 1975, "Determination of soil water diffusivity by sorptivity measurements.", Soil Sci. Soc. Am. Proc. Vol. 39: pp22-27.
34. Ferguson, J.A., 1970, "Effect of flooding depth on rice yield and water balance". Arkansas Farm Res., 19:4.
35. Gardner, W. R., 1956, "Calculation of capillary conductivity from press plate outflow data". Soil Sci. Am. Proc. Vol. 20: pp317-320.
36. Green, W.H. and G. A. Ampt,1911."Studies on soil physics, 1.The flow of Air and Water Through Soils." J.Agric.Sci. 4, 11-24.
37. Horton, R.E.,1935. "Surface Runoff Phenomena:PartI,Analysis of the Hydrograph.",Horton Hydrol. Lab. Pub. 101. Ann Arbor, Mi:Edwards Bros.
38. Huggins, L.F. and E.J. Monke,1966. "The Mathematical Simulation of the Hydrology of Small Watersheds.",Tech. Rept. 1, Purdue University Water Resource Center, Lafayette, IN, Aug.
39. Hasegawa, S., Thangaraj, M., and O''toole, J. C.,1985, " Root behavior :Field and Laboratory studies for rice and nonrice crops", in Soil Physics and Rice. International Rice Research Institute, Los Banos, Philippines, pp383-395.
40. Hasegawa, S., and Sato, T.,1985, "Soil water movement in the vicinity of soybean roots determined by root plane experiment, Trans. Jpn. Soc. Irri. Drain. Reclam. Eng. 117: 17-24."
41. IRRI, 1965.Annual report 1964, International Rice Research Institute,Los Banos, Philippines, pp335.
42. Iwata, S., Tabuchi, T. and Warkentin, B.P., 1994, "Soil-water interactions. Mechanisms and Applications. Marcel Dekker, Inc., New York, pp362-363.
43. Kampen,J., 1970, "Water losses and water balance studies in lowland rice irrigation". Ph.D. thesis, Cornell University, USA, pp416.
44. Klute, A., 1952. "A numerical method for solving the flow equation for water in unsaturated materials." Soil Sci. 73: pp105-117.
45. Klute, A., 1986. "Methods of Soil Analysis Part1 Physical and Mineralogical Methods." Soil Sci. Second Edition. The American Society of Agronomy and Academic Press.
46. Kisch, M., 1959, "The theory of seepage from clay-blanketed reservoirs", G''eotechnique 9: pp9-21.
47. Moormann , F.R. and Van Breemen, N., 1978, "Rice: soil, water land. ", International Rice Research Institute, Los Banos, Philippines, pp185.
48. Miyazaki T., Hasegawa S. and Kasubuchi T., 1993, "Water Flow in Soil". Marcel Dekker, Inc., New York, pp221-253.
49. Mc Mennamy,J.A., and J.C. O''Toole, 1983."RICEMOD: a physiologically based rice growth and yeild model." IRRI Research Paper 87. IRRI, Los Banos,Philippines.
50. Prihar, S.S., Ghildyal, B.P., Painuli, D.K. and Sur, H.S., 1985; "Physical properties of mineral soils affecting rice-based cropping systems." in:Soil Physics and Rice. International Rice Research Institute, Los Banos, Philippines, pp57-70.
51. Philip, J.R. 1957. "The theory of infiltration: 1. The infiltration equation and its solution." Soil Science, 83: pp345-357.
52. Philip, J.R. 1958. "The theory of infiltration: 6. Effect of water depth over soil." Soil Science, 85:pp278-286.
53. Richards, L.A., 1931. "Capillary conduction of liquids through porous mediums." Physics, 1: pp318-333.
54. Sharma, P.K. and De Datta, S.K., 1985. "Effects of puddling on soil physical properties and processes.", in:Soil Physics and Rice. International Rice Research Institute, Los Banos, Philippines, pp337-357.
55. Shan, C. and D.B. Stephens, 1992. "A generalized solution to ponded infiltration." Lawrence Berkeley National Lab., Berkeley, CA.
56. Sanchez, P.A., 1973, "Puddling tropical rice soils. 2. Effects of water losses", Soil Sci., 115:pp303-308.
57. Takagi, S., 1960, "Analysis of the vertical downward flow of water through a two-layered soil.", Soil Sci., 90: pp98-103.
58. Ten Berge, H.F.M., D.M. Jansen, K. Rappoldt and W. stol., 1992, "The soil water balance module SAWAH : description and users guide, Simulation Reports CABO-TT nr. 22 P.O. box 14,6700 AA Wageningen Netherlands .
59. Ten Berge, H.F.M., K. Metselaar, M.J.W. Hansen, and E.M. de San Agustin. 1995, "The SAWAH riceland hydrology model." Water Resource Research, 31(11): pp2721-2732.
60. Wopereis, M.C.S. et al., 1992, "Hydraulic resistance in puddled rice soils: measurement and effects on water movement." Soil Tillage Res., 24:pp199.
61. Wickham, T.H. and Singh, V.P., 1978, "Water movement through wet soil." In: Soils and Rice. International Rice Research Institute, Los Banos, Philippines, pp337-357.
62. Wopereis, M.C.S. et al., 1994, "Water use efficiency of flooded rice fields. (I) Validation of the soil-water balance model SAWAH." Agricultural Water Management, 26: pp277-289.
63. Wopereis, M.C.S. et al., 1994, "Water use efficiency of flooded rice fields. (II) Percolation and seepage losses." Agricultural Water Management, 26: pp291-304.
64. Zaslavsky, D., 1964, "Theory of unsaturated flow into a non-uniform soil profile", Soil Sci., 97, pp400-410.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔