跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何素珍
研究生(外文):Su-Chen He
論文名稱:缺鋅及限食對肝臟IronRegulatoryProteins及Aconitase活性之影響
論文名稱(外文):Effects of zinc deficiency and diet restriction on the hepatic iron regulatory proteins and aconitase activities in rats.
指導教授:蕭寧馨蕭寧馨引用關係
指導教授(外文):Ning-Sing Shaw
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
中文關鍵詞:鐵調節蛋白質缺鋅限食
外文關鍵詞:Iron regulatory proteinsAconitasezinc deficiencydiet restriction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋅與鐵皆是動物體的必需營養素,鋅可經由改變酵素活性,調控基因表現,影響生長、生殖及免疫功能;鐵則參與氧氣運送、電子傳遞及DNA合成,然過多的鐵會催化自由基生成,破壞生物分子,因此鐵在細胞內的濃度受嚴密調控。細胞對鐵代謝之調控主要在轉錄後層次,藉由細胞質蛋白iron regulatory proteins(IRPs)與鐵蛋白、轉鐵蛋白受體、粒線體aconitase(M-Aco)及d-ALA synthase mRNA上的iron responsive element(IRE)親和性的改變,影響其表現,進而調控鐵之貯存、利用及獲取;在細胞模式發現鐵可經由FeS cluster的插入,將IRP1轉換為細胞質Aco(C-Aco),而IRP2則是以蛋白質降解作用調控活性。早期營養學家即認為礦物質間應存在有交互作用,而前人研究發現缺鋅動物在肝臟會有鐵堆積的現象,本研究的目的乃欲了解缺鋅大鼠肝鐵代謝的情形,並探討可能影響的原因。

首先評估缺鋅對大鼠肝鐵代謝所造成的影響,分析鐵蛋白含量、粒線體含鐵酵素M-Aco、succinate dehydrogenase(SDH)及IRPs活性,分別代表肝臟對鐵的貯存、利用及調控情形。採用18隻Wistar品系公鼠,缺鋅組12隻及控制組6隻,分別餵予缺鋅及正常飼料三週,缺鋅組飼料攝取量、體重及飼料利用效率顯著低於控制組,約為控制組的50%,肝臟鋅含量及血清鹼性磷酸脢活性亦顯著低於控制組,反映了缺鋅的飲食效應。肝鐵及鐵蛋白含量則顯著高於控制組,分別為為控制組的1.96及1.9倍,但鐵蛋白mRNA並不受影響,顯示缺鋅狀態下肝鐵代謝應是調控於轉譯層次,亦即受IRPs含量影響。在肝鐵利用方面,缺鋅組粒線體Aco比活性顯著高於控制組,為控制組的1.2倍,以西方轉漬法測定粒線體Aco蛋白質含量,缺鋅組為控制組的1.29倍,與活性增加幅度相當,顯示缺鋅組粒線體Aco活性增高應來自於蛋白質含量增加之故;缺鋅組粒線體SDH比活性亦顯著高於控制組,為控制組的1.4倍。簡言之,大鼠缺鋅會促使肝臟細胞增加對鐵的運用。分析細胞質Aco比活性發現缺鋅組顯著低於控制組,暗示缺鋅會降低肝臟總IRP1含量;以gel-retardation測定IRPs含量,發現缺鋅並不會改變肝臟自發性IRP1含量,但IRP1總量顯著低於控制組,且細胞質Aco比活性與IRP1總量兩者間具良好的正相關,表示以兩種不同測定法均指出大鼠缺鋅會降低肝臟IRP1總量。綜之,大鼠餵食缺鋅飼料會增加肝鐵貯存及粒線體含鐵酵素Aco活性,降低IRP1總量,影響調控肝鐵平衡的能力。

而缺鋅狀態下,降低IRP1總量的可能因素包括有(1)肝臟缺鋅、(2)高鐵堆積及(3)限食。本實驗擬以管餵方式補充高劑量鋅以期快速回復大鼠鋅營養狀況,在未造成任何生長差異時,判別缺鋅影響肝鐵平衡之可能效應。實驗採用20隻Wistar品系公鼠,缺鋅組10隻餵予缺鋅飼料,控制及限食組各5隻,使其自由攝食或給予控制組攝食量70%的正常飼料,5隻缺鋅鼠於犧牲前一天管餵6.6 mg的鋅,是為鋅補充組。結果顯示餵飼三週,缺鋅組肝臟鋅含量及血清鹼性磷酸脢活性顯著低於控制組,而鋅補充組肝臟鋅含量則與控制組相當,表示管餵確實回復缺鋅大鼠肝臟鋅營養狀況,應可用於評估缺鋅對肝鐵代謝的專一性效應。相較於缺鋅組,鋅補充組的血清鐵含量顯著較低,與其他二組無異,而肝臟鐵及鐵蛋白含量則較高,表示缺鋅鼠管餵補充鋅會促使肝臟細胞增加對鐵的獲取及貯存;在鐵蛋白mRNA含量方面各試驗組並無差異,顯示缺鋅組及鋅補充組應是經由改變自發性IRPs含量而增加鐵蛋白的表現;粒線體Aco比活性各試驗組間無明顯差異,SDH比活性變化的趨勢與肝鐵含量一致,缺鋅組及鋅補充組顯著高於其他二組。自發性IRPs含量在各試驗組間並無差異,而細胞質Aco及IRP1總量由高而低依序為控制、限食、缺鋅及鋅補充組,鋅補充組顯著高於控制組,此結果表示回復肝臟鋅營養狀況並無法使肝鐵代謝及IRP1總量回復,細胞質Aco活性與肝鐵含量呈負相關(r=0.5, p=0.02)。顯然,缺鋅鼠急性補充鋅,確實可回復肝臟鋅濃度,卻促使肝鐵及鐵蛋白含量增加,IRP1總量更形降低,顯然IRP1總量的下降並非缺鋅所致。

為進一步評估高鐵堆積對肝臟自發性IRPs含量及IRP1總量的影響,採用12隻SD公鼠,分別餵予高鐵(2.5% carbonyl iron)及正常飼料八週,高鐵組飼料攝取量、體重、低於控制組,血清鐵、肝鐵及鐵蛋白含量顯著高於控制組,約為控制組的19倍,反映了高鐵的飲食效應。高鐵組肝臟細胞質Aco比活性顯著低於控制組,約為控制組的67%;自發性IRP1及IRP2含量亦顯著低於控制組,IRP1總量高鐵組為控制組的64%,與細胞質Aco活性表現一致,指出大鼠以餵食高鐵飼料方式,造成肝鐵大量堆積,會降低自發性及總IRP1活性,顯示在動物模式下,高鐵會導致自發性IRPs含量及IRP1總量的下降。

為探討限食對肝鐵代謝的影響,採用 Wistar品系公鼠28隻,隨機分為四組:缺鋅組(zinc-deficiency, D)餵予缺鋅飼料,控制組(control, C)、70%限食組(mild restriction, M)及50%限食組(severe restriction, S)則餵予正常飼料,限食組飼料供給量則依控制組的飼料攝取量為準,每天供應控制組的70%及50%,共餵飼三週。結果顯示隨限食程度的加劇,肝鐵含量逐漸上升,調控鐵平衡的自發性IRPs含量逐漸下降,表示限食會漸進式影響肝鐵代謝。限食及缺鋅處理均會使肝臟M-Aco與C-Aco比活性呈反向消長,但缺鋅在肝臟細胞質G6PDH、粒線體aconitase及SDH等酵素活性有其專一性的影響。

綜合上述,缺鋅造成大鼠肝鐵堆積,肝鐵蛋白含量、粒線體aconitase活性增加,部份是導因於缺鋅動物的限食效應,然而限食亦會出現組織鋅濃度降低,鐵濃度增加的現象,與膳食缺鋅效應雷同,因此無法釐清限食及缺鋅所影響的份量。限食會促進TCA循環代謝,缺鋅則會專一性增加細胞質G6PDH及粒線體SDH、aconitase活性,但兩種飲食處理下,肝臟M-Aco及C-Aco活性反向變化,維持肝臟aconitase總活性的衡定,推測有助於穩定細胞內citrate濃度。
Both zinc and iron are essential minerals for vertebrates. Zinc could influence growth, reproduction and immune function by regulate enzyme activity and gene expression. Iron participates in oxygen transfer, electron transport and DNA synthesis. Cellular iron concentration was under tightly control because iron presents in excess will catalysis generation of free radicals to destroy biological macromolecules. Iron regulatory proteins can bind iron responsive elements in the 5''-untranslational region of ferritin, mitochondrial aconitase, d-ALA synthase and in the 3''-untranslational region of transferrin receptor mRNAs to regulate the expression of the upper proteins and coordinate the storage, utilization and uptake of iron. In cell culture, it has been shown that iron can convert IRP1 to cytosolic aconitase by Fe-S cluster insertion. Biological interactions between trace minerals have long been recognized by nutritionists. In previous studies, hepatic iron accumulation occurred repeatedly in zinc deficient rats liver. And the purpose of this study was to explore the factors that alter hepatic iron homeostasis in zinc deficient rats.

In the first experiment, we assessed the effect of dietary zinc deficiency on hepatic iron metabolism in rats. Ferritin, mitochondrial aconitase, and iron regulatory proteins activities were represented as cellular iron storage, utilization and regulating capacity respectively. Two groups of male wistar rats were given free access to either a control or a zinc deficient diet for 3 weeks. The final body weight, dietary intake and feed efficiency were significantly lower in zinc deficient group. Liver zinc concentration and serum alkaline phosphatase activity were significantly lower in zinc deficient group, indicating the zinc deficient status. The liver iron and ferritin concentration in the zinc deficient group were 1.9 and 1.96 fold higher than in the control group, but there was no significantly different in the ferritin mRNA content, demonstrating that the ferritin synthesis is regulated at the translational level by IRPs. Comparing with control group, the mitochondrial aconitase activity was significantly higher in the zinc deficient group. The protein content of mitochondrial aconitase detected by western blots was also higher in the deficient group and the magnitude was paralleled with the change in the activity, indicating the increase in enzyme activity comes from the increase of protein content. The specific activity of mitochondrial succinate dehydrogenase in the zinc deficient group was 1.4 fold higher than in the control group. These results showed that rats fed zinc deficient diet would enhance hepatocyte utilizing iron for synthesis of iron-related protein. Comparing with control group, the activity of cytosolic aconitase was significantly lower in the zinc deficient group imply that the total IRP1 content would be lower in zinc deficient group. The total but not the spontaneous IRPs activities were significantly lower in zinc deficient group than in the control group. So the active percentage ( spontaneous/total ) of IRPs was higher in zinc deficient group. There was positive correlation between the cytosolic aconitase and the total IRP1 activities ( r=0.70, p=0.001 ), supporting that the total IRP1 content was low in zinc deficient status. Take together, these results indicated that hepatic iron homeostasis was altered in rat fed zinc deficient diet.

Three factors that could contribute to the change in the amount of hepatic IRP1 in zinc deficient rats were 1) zinc deficiency, 2) iron overload and 3) food restriction. To investigate the effect of zinc deficiency on the hepatic iron homeostasis, zinc deficient rats were repleted with a single dose of zinc acetate ( 6.6 mg Zn ) by gavage for 24hr before killed. Ten Wistar male rats were fed zinc deficient diet ( ZnD ) and the other ten rats were given free access to a control diet ( C ) or limit its intake to 70% of control rats ( DR ). After 3 weeks, half of the zinc deficient rats were supplemented with zinc by gavage and designed as zinc supplement ( ZnS ) group. Liver zinc concentration and serum alkaline phosphatase activity were significantly lower in zinc deficient group comparing with C and DR groups, indicating the zinc deficient status. And the liver zinc concentration of ZnS group was not different with the C group, showing gavage a single dose of zinc can restore the zinc status of rats. The concentration of serum iron was high in ZnD group comparing with the C, DR and ZnS groups. The concentration of liver iron and ferritin were high in ZnS group and by the sequence of ZnD, DR and C groups to low. The results indicated that acute zinc repletion will enhance hepatocyte uptake more iron and store in ferritin in zinc deficient rats. The activities of mitochondrial aconitase and succinate dehydrogenase from high to low were ZnS, ZnD, DR and C groups and parallel change with liver iron concentration, implying that the change in iron homeostasis might be resulted from iron but not zinc status. The activity of cytosolic aconitase was lowest in the ZnS group and negative correlated ( r=0.50, p=0.02 ) with liver iron concentration. However, the spontaneous IRPs activities were not significantly different among groups. And like the cytosolic aconitase, the activity of total inducible IRP1 was lowest in the ZnS group and highest in the control group. These results demonstrated that iron but not zinc concentration would be the major factor contributing to the change in the iron homeostasis of zinc deficient rats.

To investigate the effect of iron accumulation on the IRP1 content, two groups of S. D. male rats were fed either a control ( C ) or an iron overloading diet ( IO, 2.5% carbonyl iron ) for 8 weeks. Serum iron concentration and transferrin saturation of IO group were significantly higher than the C group. The amount of iron accumulate in the liver was 19 times higher in the IO group comparing with that in the C group. The content of ferritin in the liver of IO groups was 10 times higher than the control group, indicating the dietary iron loading effect. Under this condition, the activity of cytosolic aconitase in the IO group was significantly lower than in the C group. The activities of spontaneous and total inducible IRP1 activities in the liver were also lower in the IO group comparing with that in the C group. The results indicated iron overloading would decrease the content of IRP1 in the liver.
To explore the effect of food restriction on the hepatic IRP1 content Seven Wistar male rats were fed zinc deficient diet ( ZnD ) and the other tweenty-one rats were given free access to a control diet ( C ) or limit its intake to 70% or 50% of control rats ( M, S ) for 3 weeks. Liver zinc concentration and serum alkaline phosphatase activity were significantly lower in ZnD group comparing with C groups, indicating the zinc deficient status. Serum and liver iron concentration of ZnD group were significantly higher than the C group. The growth indices of ZnD group was similar with the S group. So comparing with the S group, the ZnD group has higher liver iron, ferritin concentration, G6PDH and SDH activities.
In conclusion, this study demonstrated that the iron but not the zinc and energy was the major factor contributing to the change in hepatic IRP1 content in zinc deficient rats. In contrast to cell culture, iron would decrease IRP1 content in certain condition in animal model.
封面
目 錄
縮寫對照表
摘要
緒言
第一章 文獻回顧
第一節、鐵運送與貯存相關之蛋白質
第二節、細胞內鐵濃度之調控
一、IRE與IRP調控ferritin及TfR的表現
二、IRP的特性及組織分布
三、影響IRP活性的因子
四、鐵平衡與他代謝功能息息相關
五、鐵營養對IRP及aconitase活性之影響
第三節、鋅的生化功能
第四節、鋅與鐵的交互作用
第二章 材料及方法
一、動物及飼料配製
二、老鼠犧牲及分析樣品的製備
三、分析項目
血球比容
血紅素
血清鐵濃度
血清鹼性磷酸水解□活性
組織鋅、鐵含量
組織粒線體aconitase含量
組織鐵蛋白含量
酵素活性測定
G6PDH
SDH
Aconitase
LDH
GDH
H-及L-鐵蛋白mRNA含量
IRP活性測定
四、方法建立及評估
第三章 缺鋅對大鼠肝鐵代謝之影響
第一節、前言
第二節、實驗一 缺鋅對肝鐵代謝之影響
第三節、實驗二 鋅對大鼠肝鐵代謝之專一性影響
第四節、實驗三 餵食大鼠高鐵飼料對肝臟IRP含量及活性的影響
第五節、討論
第四章 缺鋅及限食對肝臟IRP及aconitase活性之影響
第一節、前言
第二節、實驗一 禁食與飽狀態對肝臟aconitase活性之影響
第三節、實驗二 缺鋅與限食對肝臟aconitase活性之影響
第四節、討論
第五章 綜合討論
第六章 參考文獻
Chen, O. S., Schalinske, K. L. and Eisenstein, R. S. ( 1997 ) Dietary iron intake modulates the activity of iron regulatory proteins and the abundance of ferritin and mitochondrial aconitase in rat liver. J. Nutr. 127: 238-248.
Chen, O. S., Blemings, K. P., Schalinske, K. L. and Eisenstein, R. S. ( 1998 ) Dietary iron intake rapidly influences iron regulatory proteins, ferritin subunits and mitochondrial aconitase in rat liver. J. Nutr. 128: 525-535.
Gray, N. K., Pantopoulos, K., Dandekar, T., Ackrell, B. A. and Hentze, M. W. ( 1996 ) Translation regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements. Proc. Natl. Acad. Sci. 93: 4925-4930.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top