跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱誠
研究生(外文):Ju, Kuen-Cheng
論文名稱:掃描型超音波換能器順形加熱之探討
論文名稱(外文):Study on Conformal Heating with Scanned Ultrasound Transducers
指導教授:陳永耀陳永耀引用關係林文澧林文澧引用關係
指導教授(外文):Chen, Yung-YawLin, Win-Li
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:91
中文關鍵詞:腫瘤熱療超音波超描型超音波換能器順形加熱
外文關鍵詞:tumorhyperthermiaultrasonicscanned ultrasound transducerconformal heating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據行政院衛生署86年的統計資料, 國人十大死因仍以惡性腫瘤(癌症)為首。因此,對於癌症的治療研究實為刻不容緩。根據實驗顯示,組織細胞在43℃以上的高溫環境中,存活率隨加熱時間增長而有明顯下降的趨勢。
對於深層腫瘤的加熱,本研究一改以往利用大型二維超音波換能器矩陣相位調變的方式,試圖利用一維超音波換能器矩陣加以旋轉,來達成對深層腫瘤細胞加熱的目標。這種方式,大量減少換能器的數目,同時減少控制的困難度,增加了系統的可實現性。
對於乳房腫瘤的治療,本研究發展出一掃描圓筒型超音波換能器,並對於在各種參數下的能量場及溫度場的分佈情形加以探討。經由控制參數調整,可以成功的將能量焦集在乳房的中心或表層。甚至可以控制加熱的方向性,對整個乳房或部份的乳房進行的加熱。
掃描型換能器所造成的變動波場難以計算,此外,暫態溫度場的計算也十分耗時。因此,本研究經由理論的推導及模擬,証明了生物熱傳模型是一個低通濾波器。所以,變動的能量場所造成的溫度效應與靜態的能量場所產生的溫度效應相當近似。這不但避免掉變動能量場計算的困難,也減少了計算暫態溫度場的時間。

The statistics from the Department of Health shows that cancer is the number one cause of death for residents in Taiwan in 1997. Hence, cancer treatment plays a very important role in health care. Current clinical experiences strongly suggest that hyperthermia will become an important modality as an adjuvant to radiotherapy in the treatment of locally advanced solid tumors.
The derivation of temperature distributions is usually difficult for scanned ultrasound transducers. It is shown in this thesis that a static transducer pattern can achieve very accurate approximation of the temperature distribution from a scanning transducer. The result can be further explained from the low-pass filtering effect from the tissue, which is described by the Bio Heat Transfer Equation. Theoretically derivations and simulations are given to provide an insight to this problem.
For deep-seated tumors, a one-dimensional phased array ultra-sound transducer is designed with proper scanning motion. The proposed system is equivalent to a two-dimensional phased array ultrasound transducer in terms of temperature distribution generated. This method can dramatically reduce the number of transducer element needed for ultrasound hyperthermia treatment.
This study is to examine the energy deposition and the temperature distributions for breast tissues with various sizes and locations when a scanned cylindrical ultrasound transducer is employed for hyperthermia treatments. Simulations show that power can be successfully deposited both in the central or the superficial portion of the breast. Combining low and high frequencies with scanning angle adjustments, successful treatment can be done from partial to whole breast.

Abstract ....................................................................................................................I
Content....................................................................................................................Ⅲ
Index ......................................................................................................................Ⅴ
CHAPTER 1
INTRODUCTION.............................................................................................1
1.1 INTRODUCTION TO HYPERTHERMIA......................................................2
1.2 ULTRASOUND HYPERTHERMIA................................................................2
1.3 SCANNED ULTRASOUND HYPERTHERMIA............................................5
1.4 THESIS ORGANIZATION...............................................................................7
CHAPTER 2
THEORETICAL ANALYSIS AND SIMULATION METHOD............................8
2.1 THEORETICAL ANALYSIS OF ACOUSTIC WAVES.................................9
2.2 NUMERICAL APPROXIMATION OF ACOUSTIC FIELD.........................18
2.3 BIOHEAT TRANSFER EQUATION AND TEMPERATURE DISTRIBUTION..................21
CHAPTER 3
TEMPERATURE DISTRIBUTION FOR SCANNED ULTRASOUND HYPERTHERMIA SYSTEMS....................23
3.1 PROBLEM FORMULATION..........................................................................24
3.2 THE TRANSFER FUNCTION OF BHTE.......................................................30
3.3 FREQUENCY RESPONSE..............................................................................32
3.4 THE EFFECTS OF SCANNING SPEED........................................................34
CHAPTER 4
DEEP-SEATED TUMOR TREATMENT STRATEGY........................................37
4.1 MOTIVATION.................................................................................................38
4.2 SYSTEM CONFIGURATION.........................................................................38
4.3 ULTRASOUND POWER DEPOSITION AND SAR RATIO.......................41
4.4 SIMULATION RESULTS................................................................................43
4.5 AN EXAMPLE OF SYSTEM DESIGN..........................................................55
4.6 CONCLUSION.................................................................................................56
CHAPTER 5
SCANNED CYLINDRICAL ULTRASOUND TRANSDUCERS FOR BREAST TUMOR...........57
5.1 REVIEW OF BREAST TUMOR TREATMENT SYSTEM...........................58
5.2 SYSTEM CONFIGURATION........................................................................59
5.3 SIMULATION PROCEDURES......................................................................60
5.4 DISTRIBUTIONS OF SAR RATIO...............................................................63
5.5 TEMPERATURE DISTRIBUTION................................................................77
CHAPTER 6
CONCLUSIONS........................................................................................................................80
6.1 POWER DISTRIBUTION FOR SCANNED ULTRASOUND HYPERTHERMIA........80
6.2 DEEP-SEATED TREATMENT STRATEGY.....................................................................81
6.3 SCANNED CYLINDRICAL ULTRASOUND TRANSDUCERS................................... 81
REFERENCE.....................................................83
APPENDIX A...................................................87
APPENDIX B...................................................90

1. J. Overgard, "The current and potential role of hyperthermia in radiatherapy," Int. J. Radiation Oncology Biol. Phys., Vol. 16, pp. 535-549, 1989
2. E. Ben_Hur, B. V. Bronk, M. M. Elkind, "Thermally enhanced radiosensitivity of cultured Chinese hamster cells," Nature; New Biology, Vol. 238, pp. 209-211, 1972
3. Lele PP, "thresholds and mechanisms of ultrasonic damage to "organized" animal tissues," United States Department of Health, Education and Welfare, Rockville, MD, pp. 224-239, 1977
4. Lele PP, "Physical aspects and clinical studies with ultrasound hyperthermia," In: Storm FC (ed) Hyperthermia in cancer therapy. Hall Medical, Boston, pp. 333-367, 1983
5. Johnson SA, "Non-Intrusive measurement of microwave and ultrasound induced hyperthermia by acoustic temperature tomograpgy," Proceedings of the IEEE ultrasonic symp, pp 977-982, 1977
6. Bamber JC, Hill CR, "Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature," Ultrasound Med Biol 5:149-157, 1979
7. K. B. Ocheletree, "Sound field calculation for rectangular sources," IEEE Trans. on Ultrasonics, ferroelectrics and frequency control Vol. 32. No. 2, March 1989
8. Pennes H. H., "analysis of tissue and arterial blood temperature in the resting forearm", J. Appl. Physiol., Vol. 1,pp. 93-122,1948.
9. Emad S. Ebbini, "A cylindrical-section ultrasound phased array applicator for hyperthermia cancer therapy," IEEE Trans. on Ultrasonics, ferroelectrics and frequency control Vol. 35. No. 5, September 1988
10. Emad S. Ebbini, "A spherical-section ultrasound phased array applicator for deep localized hyperthermia," IEEE Trans. on biomedical engineering. Vol. 38. No. 7, July 1991
11. Eduardo G. Moros, "A reflected-scanned ultrasound system for external simultaneous thermoradiotherapy," IEEE Trans. on Ultrasonics, ferroelectrics and frequency control Vol. 43. No. 3, May 1996
12. K. Hynynen, D. J. Watmough, M. Shammari, G. Wilmot, M. S. N. Murthy, J. R. Mallard, M. Fuller, and T. Sarkar, "A clinical hyperthermia unit utilizing an array of seven focused ultrasonic transducers," Proceedings of the IEEE 1983 Ultrasound Symposium, pp. 816-821, 1983
13. Win-Li Lin, J.Y. Yen, Y.Y. Chen, K. W. Jin and M. J. Shieh, "Relationship between acoustic aperture size and tumor conditions for external ultrasound hyperthermia," Med. Phys, May, 1999.
14. Win-Li LIN, R. B. Roemer, E. G. Moros, and K. Hynynen, "Optimization of temperature distributions in scanned, focused ultrasound hyperthermia," International Journal of Hyperthermia, Vol.8, pp.61-78, 1992
15. E. G. Moros, R. B. Roemer, and K. Hynynen, "Pre-focal plane high temperature regions induced by scanning focussed ultrasound beams," International Journal of Hyperthermia, Vol.6, pp.351-366, 1990
16. K. Hynynen, "Biophysics and technology of ultrasound hyperthermia," in Methods of External Hyperthermic Heating, edited by M. Gautherie, pp. 61-116, 1990
17. X.-Q. Lu, E. C. Burdette, B. A. Bornstein, J. L. Hansen, and G. K. Svensson, "Design of an ultrasonic therapy system for breast cancer treatment," Int. J. Hyperthermia, Vol.12, pp.375-399, 1996
18. J. L. Hansen, E. C. Burdette, P. Neubauer, X.- Q. Lu , B, A. Bornstein, and G, K. Svensson, "Experimental verification of a cylindrical multi-trasnducer ultrasound breast hyperthermia treatment," Proc. 7th Int'l Cong. Hyperthermic Oncology, Vol. 2, pp. 388-390, 1996
19. P. P. Lele, "Physical aspects and clinical studies with ultrasound hyperthermia," in Hyperthermia in Cancer Therapy, edited by F. C. Storm, pp. 333-367, 1983
20. P. Fessenden, E. R. Lee, T. L. Anderson, J. W. Strohbehn, J. L. Meyer, T. V. Samulski, and J. B. Marmor, "Experience with multitransducer ultrasound system for localized hyperthermia of deep tissues," IEEE Trans. Biomed. Eng. Vol.31, pp.126-134, 1984
21. K. H. Hynynen, R. B. Roemer, D. Anhalt, C. Johnson, Z. X. Xu, W. Swindell, and T. Cetas, "A scanned focused multiple transducer ultrasonic system for localized hyperthermia treatments," Int. J. Hyperthermia, Vol.3, pp. 21-35, 1987
22. A. W. Dutton, R. B. Roemer, and F. A. Gibbs, "A clinically integrated scanned focused ultrasound hyperthermia," Proc. 7th Int'l Cong. Hyperthermic Oncology, Vol. 1, pp. 92, 1996
23. P. M. Corry, B. Barlogie, E. J. Tilchen, and E. P. Armour, "Ultrasound induced hyperthermia for the treatment of human superficial tumors," Int. J. Radiat. Oncol. Biol. Phys. Vol.8 , pp.1225-1229, 1982
24. P. Munro, R. P. Hill, and J. W. Hunt, "the development of improved ultrasound heaters suitable for superficial tissue heating," Med. Phys., Vol. 9, pp.888-897, 1982
25. H. R. Underwood, E. C. Burdette, K. B. Ocheltree, and R. L. Magin, "A multielement ultrasonic hyperthermia applicator with independent element control," Int. J. Hyperthermia, Vol. 3, pp.257-267, 1987
26. Win-Li Lin, "Scan parameter optimization and a temperature controller for scanned focused ultrasound hyperthermia: A theoretical and experimental study," Ph.D. Dissertation, University of Arizona, Tucson, AZ, 1990.
27. K. Hynynen, "Biophysics and technology of ultrasound hyperthermia," in Methods of External Hyperthermic Heating, edited by M. Gautherie, pp. 61-116, 1990
28. H. Arkin, X. Xu, and K.R. Holmes, "Recent developments in modeling heat transfer in blood perfusion tissues," IEEE T. Biomed. Eng. 41, pp.97-107, 1994
29. T. Sano, N. Takayama, and M. Saito, "Depth control of heating with a non-focused ultrasound transducer operating at fundamental and harmonic resonance frequencies," Proc. 7th Int'l Cong. Hyperthermic Oncology, Vol. II, pp. 379-381, 1996
30. E. G. Moros, W. L. Straube, X. Fan, and R. Myerson, "Power deposition conformability of the surlas: A system for external simultaneous thermoradiotherapy," Proc. 7th Int'l Cong. Hyperthermic Oncology, Vol. II, pp. 470-472, 1996
31. Win-Li Lin, J. Y. Yen. Y. Y. Chen, K. W. Jing, and M. J. Shieh, "Relationship between acoustic aperture size and tumor conditions for external ultrasound hyperthermia," Med. Phys. (revised, 1998).
32. E. M. Waterman and D. B. Kramer, "Changes in human tumor blood flow during four weeks of hyperthermia," Proc. 14th Ann. Meeting North Am. Hyperthermia Soc., pp. 125, 1994
33. K. M. Sekins and A. Emery, "Thermal science for physical medicine," in Therapeutic Heat and Cold, edited by J. Lehmann, pp. 70-132, 1982

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊