跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋立偉
研究生(外文):Li-Wei Sung
論文名稱:1.55微米非對稱耦合量子井結構
論文名稱(外文):Study of 1.55 μm asymmetric couple quantum well active layer laser-modulator OEIC
指導教授:林浩雄林浩雄引用關係
指導教授(外文):Hao-Hsiung Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:89
中文關鍵詞:1.55微米非對稱耦合量子井雷射-調變器積體化藍位移史塔克效應
外文關鍵詞:1.55 μmasymmetric couple quantum welllaser-modulator OEICblue shiftstark shift
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目標為1550nm DFB雷射二極體與調變器積體光學電路的實現。採行的結構為較新穎的同一主動層結構;亦即雷射二極體與調變器使用相同主動層的方式。為了使雷射的發光波長與調變器的吸收波長更進一步分開,我們首先以理論計算的方式,探討了不同形狀的量子井結構對史塔克效應的影響,設計出特殊的非對稱耦合量子井結構使之由平帶順偏壓到零偏壓的範圍能夠在吸收波長上造成藍位移。其次我們以氣態源分子束磊晶法成長這種特殊的量子井,在與傳統方形量子井比較之下,我們發現非對稱耦合量子井結構所製的寬面積雷射震盪放光尖峰與PIN光二極體零偏壓吸收尖峰相距達37.5 nm,而傳統方形量子井僅有30 nm。我們也由PIN二極體的吸收譜驗證了理論計算的藍位移現象。最後我們以非對稱耦合量子井結構成功地完成脊狀波導DFB雷射與調變器的積體化結構,雷射發光波長1540 nm,調變器由0V到-5.8V的消光比達13dB。

In this study, we realize 1.55μm DFB laser - modulator optoelectronic integration circuits by using identical active layer (IAL) approach which applies the same active layer in laser and modulator. To solve the intrinsic problem in identical active layer approach that the laser gain spectrum is too close to the modulator absorption, a novel asymmetric couple quantum well structure was designed to enlarge the separation between the gain and absorption spectrum theoretically. Then two epitaxial samples with conventional QWs and asymmetric couple QWs were grown by gas source MBE and processed to be broad area lasers and PIN photo diodes. From the measurement results of those devices, the theoretical calculation is proven. Finally, 1.55μm DFB laser - modulator optoelectronic integration circuits with 13dB Extinction ratio are demonstrated.

摘要1
ABSTRACT2
目錄3
圖表索引5
第1章 緒論9
第2章 理論14
2.1 磊晶材料與磊晶結構14
2.2 量子化效應16
2.3 應變效應19
2.4 波導光場計算21
2.5 量子史塔克位移理論與計算24
2.6 DFB光柵29
第3章 計算結果41
3.1 非對稱耦合量子井結構41
第4章 實驗與結果討論47
4.1 元件製作程序52
4.1.1 寬面積雷射製程52
4.1.2 PIN光二極體製程53
4.1.3 脊狀波導雷射調變器光電積體電路製程54
4.2 非對稱耦合量子井結構驗證56
4.2.1 磊晶結構56
4.2.2 元件製作與量測結果57
4.2.3 結果討論59
4.3 非對稱耦合量子井主動層雷射-調變器光電積體電路60
4.3.1 結構設計60
4.3.2 元件量測與結果討論61
第5章 結論84
參考文獻85
圖表索引
表3-1 圖3-7史塔克位移計算中各量子井組成與寬度45
表4-1 結構一磊晶組成63
表4-2 結構二磊晶組成64
表4-3 磊晶結構一與結構二的雷射內部參數擬和結果65
表4-4 結構三磊晶組成66
表4-5 結構四磊晶組成67
圖2-1 三五族半導體晶格常數對能隙關係圖33
圖2-2 半導體塊材與量子井結構中能階密度示意圖34
圖2-3 能階密度分佈對材料增益的影響34
圖2-4 應變效應示意圖35
圖2-5 壓縮應變下量子井等效質量的變化35
圖2-6 FRANZ-KELDYSH 效應示意圖36
圖2-7 量子史塔克位移效應示意圖36
圖2-8 帶混成效應與應變37
圖2-9 任意形狀量子井結構載子波包函數計算示意圖38
圖2-10 純折射率耦合DFB雷射臨界增益值計算結果39
圖2-11 混合耦合式DFB雷射臨界增益值計算結果39
圖2-12 純增益耦合DFB雷射臨界增益值計算結果40
圖3-1 RAMDANE實驗結果示意圖46
圖3-2 調變器吸收與雷射增益關係示意圖46
圖3-3 L. VINA 實驗結果示意圖47
圖3-4 100埃寬度方形量子井量子史塔克位移計算結果48
圖3-5 CHEN對不同形狀量子井量子史塔克位移的計算結果49
圖3-6 傳統方形量子井與耦合量子井的量子史塔克位移比較50
圖3-7 對不同形狀量子井量子史塔克位移的計算結果51
圖3-8 對不同形狀量子井電子與電洞波包函數的重疊乘積平 方積分結果51
圖4-1 寬面積雷射結構圖68
圖4-2 PIN光二極體結構圖68
圖4-3 雷射調變器積體化結構圖69
圖4-4 磊晶結構波導光場分佈計算結果69
圖4-5 結構一X-RAY繞射量測與模擬結果比較70
圖4-6 結構二X-RAY繞射量測與模擬結果比較70
圖4-7 結構一二極體電壓-電流量測結果71
圖4-8 結構二二極體電壓-電流量測結果71
圖4-9 結構一寬面積雷射放光頻譜72
圖4-10 結構二寬面積雷射放光頻譜72
圖4-11 結構一PIN光二極體光電流於不同偏壓下量測結果73
圖4-12 結構二PIN光二極體光電流於不同偏壓下量測結果73
圖4-13 結構一光電流量測結果理論計算比較74
圖4-14 結構二光電流量測結果理論計算比較。74
圖4-15 結構一與結構二雷射放光頻譜與零偏壓下的調變器光 吸收頻譜比較75
圖4-16 結構一雷射內部量子效率與波導損耗擬和76
圖4-17 結構一雷射於無鏡面損耗時臨界電流密度擬和76
圖4-18 結構二雷射內部量子效率與波導損耗擬和圖77
圖4-19 結構二雷射於無鏡面損耗時臨界電流密度擬和77
圖4-20 X-RAY繞射量測與模擬結果比較。78
圖4-21 結構三與結構二主動層光激螢光量測結果比較78
圖4-22 光柵結構掃瞄式電子顯微鏡照片I 79
圖4-23 光柵結構掃瞄式電子顯微鏡照片II 79
圖4-24 結構四二極體電壓-電流量測結果80
圖4-25 DFB雷射放光頻譜特性量測I81
圖4-26 DFB雷射放光頻譜特性量測II81
圖4-27 調變器直流偏壓調變對光輸出量測結果82
圖4-28 調變器為零偏壓下元件的放光頻譜83
圖4-29 調變器為 -5.8 V偏壓下元件的放光頻譜83

參考文獻
[1] K. Wakita, and I. Kotaka, "Multiple-Quantum-Well Optical Modulators and Their Monolithic Integration with DFB lasers for Optical-Fiber Communications", Microwave and Optical Technol. lett., vol. 7, pp 120-128, 1994.
[2] J. Singh, "Semiconductor optielectronics", McGraw-Hill, Inc.
[3] O. Sahlen, "Optimization of DFB laser integrated with Franz-Keldysh absorption modulatiors", J. Lightwave Technol., vol. 12, pp 969-976, 1994.
[4] A. Ramdane, F. Devaux, N. Souli, D. Delprat, and A. Ougazzaden, "Monolithic Integration of Multiple-Quantum-Well Laser and Modulators for High-Speed Transmission", IEEE J. Selected Topics in Quantum Electronics, vol 2, pp 326-335, 1996.
[5] Y. Kawamura, K. Kakita, Y. Yoshikuni, Y. Itaya, and H. Asahi, "Monolithic Integration of a DFB laser and an MQW optical modulator in the 1.5μm wavelength range", IEEE J. Quantum Electron., vol. QE-23, pp 915-918, 1987.
[6] M. Ishizaka, M. Yamaguchi, Y. Sakata, Y. Inomoto, J. Shimizu, K. Komatsu, "Modulator integrated DFB lasers with more then 600-km transimission capability at 2.5 Gb/s", IEEE Photonic Technol. Lett., vol. 9, pp 1406-1408, 1997.
[7] K. Sato, I. Kotaka, K. Wakita, Y. Kondo, and M. Yamamoto, "Strained-InGaAsP MQW electroabsorption Modulator Integrated DFB Laser" Electronics Lett., vol. l29, pp 1087-1089, 1993.
[8] D. Gershoni, C. H. Henry, and G. A. Baraff, "Calculating the optical properties of multidimemsional heterostructures: application to the modeling of quaternary quantum well lasers", IEEE J. Quantum Electron., vol. 29, pp 2433-2450, 1993.
[9] L. A. Coldren, and S. W. Corzine, "Diode Lasers and Photonic integrated Circuits", JOHN WILEY & SONS, Inc.
[10] H. Ghafouri-Shiraz, and B. S. K. Lo, "Distributed feedback laser diodes", JOHN WILEY & SONS, Inc.
[11] V. Swaminathan, A. T. Macrander, "Materials Aspects of GaAs and InP Based Struvtures", Prentice-Hall, Inc.
[12] O. Ueda, "Materitals -related reliability aspects of III-V optical devices", materials science and engineering, vol B20, pp9-20, 1993.
[13] P. F. Liao, and P. L. Kelley, "Quantum well lasers", ACADEMIC PRESS, Inc.
[14] E. Yablonovitch, and E. O. Kane, "Band structure engineering of semiconductor lasers for optical communications", IEEE J. Lightwave Technol., vol. 6, pp 1292-1299, 1988.
[15] S. Nojima, and K. Wakita, "Optimization of quanmtum well material and structure for excitonic electroabsorption effects", Appl. Phys. Lett., vol. 53, pp 1958-1960, 1988.
[16] P. J. A. Thijs, L. F. Tiemeijer, J. J. M. Binsma, and T. van Donden, "Progress in long-wavelength strained-layer InGaAsP quantum well semicondutor lasers and amplifiers", IEEE J. Quantum Electron., vol. 30, pp 477-499, 1994.
[17] G. Fuchs, J. Horer, A. Hangleiter, V. Harle , F. Scholz, R. W. Glew, and L. Goldstein, "Intervalence band absorption in strained and unstrained InGaAs multiple quantum well structures", Appl. Phys. Lett. vol. 60, p 231-234, 1992.
[18] R. Adam, "Band-Structure engineering for low-threshold high-efficiency semiconductor lasers", Electron. Lett., vol 22, pp 249-250, 1986.
[19] N. K. Dutta, and R. J. Nelson, "The case for Auger recombination in InGaAsP", J. Appl. Phys., vol. 53, pp 74-92, 1982.
[20] O. Gilard, F. L. Dupuy, G. Vassilieff, J. Barrau, and P. L. Jeune, "Theretical study of auger effect in 1.5μm quantum-well lasers", J. Appl. Phys., vol. 84, pp 2705-2715, 1998.
[21] W. X. Zou, Z. M. Chuang, K-K Law, N. Dagli, L. A. Coldren, and J. L. Merz, "Analysis and optimization of graded-index separate-confinement heterostructure wavegudes for quantum well lasers", J. Appl. Phys., vol. 69, pp 2857-2861, 1991.
[22] C. H. Henry, L. F. Johnson , R. A. Logan, and D. P. Clarke, "Determination of the Refractive Index of InGaAsP epitaial layers by mode line luminescence spectroscopy", IEEE J. Quantum Electron., vol. QE-21, pp1887-1892, 1985.
[23] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Electric field dependence of optical absorption near the band gap of quantum-well structures", Phys. Rev. B, vol 32, pp1043-1060, 1985.
[24] Y. Nakano, and K. Tada, "Facet reflection independent single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupling mechanism", Appl. Phys. Lett., vol. 15, pp1606-1608, 1989.
[25] G. P. Li, and T. Makino, "Single mode analysis of partly gain-coupled multiquantum-well DFB lasers", IEEE Photonic Technol. Lett., vol. 5, pp 1282-1284, 1993.
[26] Y. Nakano, H. L. Cao, K. Tada, Y. Luo, M. Dobashi, and H. Hosomatsu, "Absorptive-Grating Gain-Coupled Distributed-Feedback MQW Lasers with Low Threshold Current and Current and Hight Simgle-Longitudinal-Mode Yield", Jpn. J. Appl. Phys., vol. 32, pp 825-829, 1993.
[27] "Properties Of Indium Phosphide", The Institution of Electrical Engineers.
[28] L. Vina, E. E. Mendez, W. I. Wang, L. L. Chang, and L. Esaki, "Stark shift in GaAs/GaAlAs quantum wells studyed by photoluminescence spectroscopy", J. Phys. C, vol 20, pp2803-2815, 1987.
[29] W. Chen, and T. G. Adnersson, "Quantum stark shift for differently shaped quantum wells", Semicond. Sci. Technol., vol. 7, pp828-836, 1992.
[30] R. K. Gug, and W. E. Hagston, "Large blue shift induced by the quantum confined stark effect in asymmetric quantum wells", Appl. Phys. Lett., vol. 73, pp 1547-1549, 1998.
[31] P. W. Yu, D. C. Reynolds, G. D. Sanders , K. K. Bajaj, C. E. Stutz, and K. R. Evans, "Electric-field effects of excitons in asymmetric triangular AlxGa1-xAs-GaAs quantum wells", Phys. Rev. B, vol. 43, pp 4344-4348, 1991.
[32] Y. Hung, J. Wang, and C. Lien, "Electric-field dependence of optical absorption properities in coupled quantum wells and their application to 1.3μm optical modulator", J. Appl. Phys., vol. 77, pp 11-16, 1995
[33] P. Steinmann, B. Borchert, and B Stegmuller, "Asymmetry quantum wells with enhanced QCSE: modulation behavior and application for integrated laser/modulator", IEEE Photon. Technol. Lett., vol 9, pp 191-193 , 1997.
[34] D. Ahn, " Enhancement of stark effect in coupled quantum wells for optical switching devies", IEEE J. Quantum Electron., vol. 25, pp 2260-2265, 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top