(3.232.129.123) 您好!臺灣時間:2021/03/04 18:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂學明
研究生(外文):Hsueh-Ming Lu
論文名稱:鎳擴散式鈮酸鋰Ζ形彎曲波導之研究
論文名稱(外文):A Study of Nickel-Indiffused Lithium Niobate Z-Bend Waveguide
指導教授:王維新王維新引用關係
指導教授(外文):Way-Seen Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:130
中文關鍵詞:鈮酸鋰Ζ形彎曲波導質子交換法區域反轉等效折射率選擇性蝕刻積體光學側擴散
外文關鍵詞:Lithium NiobateZ-Bend waveguideProton exchangeDomain inversionEffective refractive indexSelective etchingIntegrated opticsLateral diffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
彎曲波導為積體光學中的重要元件之一。然而,隨著彎曲角度加大,傳播損耗將大幅增加。使得傳統彎曲波導的轉角必須限制在1°以下,在應用上將會造成元件面積增加,結構變長。因此,如何製造出大角度、低損耗的彎曲波導是積體光學中的一項重要課題。
本論文使用質子交換法製造特殊設計的高折射率稜鏡式之架構,以改善鎳擴散式鈮酸鋰彎曲波導之傳輸效率。首先,提出彎曲波導之理論研究,接著利用全反射的特性及側擴散現象設計出本特殊結構元件,建立其設計公式,並利用光束傳播法,求其傳輸效率。發現本元件經過5°左右的彎曲角度後仍可維持高達90%以上的傳輸效率。
對於筆者所設計的彎曲波導,相關的一些製程參數,如鎳波導的導光條件、折射率的量測、蝕刻法確認質子交換的深度和側擴散形狀,退火處理後的等效折射率改變、折射率輪廓方程式..等,都在本論文中予以確實觀察與瞭解。
最後,以此實際量測為根據,設計出經由模擬所得到的元件結構規格。並且經由實作,成功的製作出一個優良的鎳擴散式鈮酸鋰Ζ形彎曲波導。得到了彎曲角度在4.4°下,其傳輸率可維持50%左右,大於傳統彎曲波導只有5%以下的傳輸效率。確實為大角度彎曲光波導提供一可行之方法。

附表目錄
附圖目錄
第一章 緒論1
1.1 積體光學簡介1
1.2 製作積體光學的材質2
1.3 鈮酸鋰晶體簡介3
1.3-1 鈮酸鋰的晶格結構4
1.3-2 鈮酸鋰的居里溫度與相變化4
1.3-3 鈮酸鋰的折射率5
1.3-4 鈮酸鋰晶體的非線性係數和電光係數6
1.4 內容概述7
第二章 彎曲波導之理論研究9
2.1 積體光學中的波導彎曲9
2.2 鈦擴散折射率模型建立10
2.3 光束傳播法13
2.4 元件之設計理念與其模擬結果14
第三章 積體光學元件製程21
3.1 晶片切割21
3.2 晶片清洗22
3.3 光製版術與圖形轉移23
3.4 蒸鍍及濺鍍金屬或氧化物25
3.5 掀離法和蝕刻法26
3.6 高溫擴散27
3.7 質子交換28
3.8 晶片研磨及拋光29
3.9 選擇性蝕刻32
3.10 觀察量測33
3.11 製程順序34
第四章 質子交換法36
4.1 質子交換法簡介36
4.2 質子交換源37
4.3 折射率不穩定及退火處理39
4.4 區域反轉與溼式蝕刻40
第五章 實驗結果與討論42
5.1 鎳擴散式波導42
5.1-1 簡介42
5.1-2 鎳波導的導光條件與導光模態43
5.2 質子交換法所觀察到的一些現象45
5.2-1 折射率的量測原理45
5.2-2 折射率量測結果比較49
5.2-3 焦磷酸的污染問題52
5.2-4 濕蝕刻法確認其深度與側擴散形狀53
5.2-5 以IWKB法求得折射率函數59
5.3 場型與功率量測61
第六章 結論及未來展望63
參考文獻65
附表 69
附圖 73
中英文名詞對照表 129

[1] F. J. Leonberger, "High-speed operation of LiNbO3 electrooptic interferometric waveguide modulators," Opt. Lett., vol. 5, no. 7, pp. 312-314, 1980.
[2] W. Dolfi, M. Nazarathy, and R. L. Jungerman, ? GHz Electrooptic modulator with 7.5V driver voltage," Electron. Lett., vol. 24, no. 9, pp. 528-529, 1988.
[3] R. C. Alferness, "Waveguide electroopical modulators," IEEE Trans. on Microwave Theory and Tech., vol. MTT-30, no. 8, pp. 1121-1137, 1982.
[4] C. S. Tsai, "Guided-wave acoustoopic bragg modulators for wideband integrated optic communications and signal processing," IEEE Trans. on Circuit and Sys., vol. CAS-26, no. 12, pp. 1072-1098, 1979.
[5] T. Suzuki, O. Eknoyan, and H. F. Taylor, "Electrooptic coefficient measurements in LiNbO3 and LiTaO3," J. Lightwave Technol., vol. 11, no. 2, pp. 285-289, 1993.
[6] S. S. Lee, M. C. Oh, S. Y. Shin, and K. H. Keh, "Integrated optical high voltage sensor using a Z-cut LiNbO3 cutoff modulator," IEEE Photon. Technol. Lett., vol. 5, no. 9, pp. 996-998, 1993.
[7] A. Yariv, P. Yeh, Optical Waves in Crystals, Wiley, 1984.
[8] D. Hutcheson I. A. White, and J. J. Burke, "Comparison of bending losses in integrated optical circuits," Optics Lett., vol. 5, no. 6, pp. 276-278, 1980.
[9] S. M. Sze, VLSI Technology, 2nd ed., Mc-Graw Hill, New York, 1988.
[10] Minakata, S. Saito, M. Shibata, and S. Miyazawa, "Precise determination of refractive-index changes in Ti-diffused LiNbO3 waveguides," J. Appl. Phys., vol. 49, no. 9, pp. 4677-4682, 1978.
[11] Minakata, S. Saito, and M. Shibata, "Two-dimensional distribution of refractive index changes in Ti-diffuded LiNbO3 strip waveguides," J. Appl. Phys., vol. 50, no. 5, pp. 3063-3067, 1979.
[12] R. V. Schmidt, and I. P. Kaminow, "Metal-diffused optical waveguides in LiNbO3," Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, 1974.
[13] K. T. Koai, and P. L. Liu, "Modeling of Ti: LiNbO3 waveguide devices: Part Ⅰ-directional couplers," J. Lightwave Technol., vol. 7, no. 3, pp. 533-539, 1989.
[14] F. S. Chu, and P. L. Liu, "Simulation of Ti: LiNbO3 waveguide modulators-A comparison of simulation techniques," J. Lightwave Technol., vol. 8, no. 10, pp. 1492-1496, 1990.
[15] 林漢賓, "低損失大角度光波導彎曲及分岔的研究," 國立台灣大學電機工程研究所博士論文, 1995.
[16] J. A. Fleck, Jr. J. R. Morris, and M. D. Feit, "Time-dependent propagation of high energy laser beams through the atmosphere," J. Appl. Phys., vol. 10, pp. 129-160, 1976.
[17] M. D. Feit, and J. A. Fleck, Jr., "Light propagation in graded index optical fibers," Appl. Opt., vol. 17, no. 24, pp. 3990-3998, 1978.
[18] M. D. Feit, and J. A. Fleck, Jr., "Calculation of dispersion in graded-index multimode fibers by a propagating-beam method," Appl. Opt., vol. 18, no. 16, pp. 2843-2851, 1979.
[19] M. D. Feit, and J. A. Fleck, Jr., "Mode properties and dispersion for two optical fiber-index profile by the propagating beam method," Appl. Opt., vol. 19, no. 18, pp. 3140-3150, 1980.
[20] L. Thylen, "The beam propagation method: An analysis of its applicability," Opt. Quantum Electron., vol. 15, pp. 433-439, 1983.
[21] J. Van roey, J. Van der donk, and P. E. Lagasse, "Beam-propagation method: Analysis and assessment," J. opt. Soc. Amer., vol. 73, pp. 803-810, 1981.
[22] K. T. Koai, and P. L. Liu, "Modeling of Ti: LiNbO3 devices: PartⅡ-S shaped channel waveguide bends," J. Lightwave Technol., vol. LT-7, pp.1016-1022, 1989.
[23] Y. Chung, and N. Dagli, "An assessment of finite difference beam propagation method," IEEE J. Quantum Electron., vol. QE-26, pp. 1335-1339, 1990.
[24] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, "Wet etching of proton-exchanged lithium niobate-A novel processing technique", J. Lightwave Technol. ,vol. 10, pp. 1606-1609, 1992.
[25] 陳瑞鑫, "利用溼式蝕刻法研製之脊型鈮酸鋰光波導元件", 國立台灣大學電機工程研究所博士論文, 1996.
[26] 陳德榮, "鎳擴散式鈮酸鋰光波導之研製", 國立台灣大學電機工程研究所碩士論文, 1994.
[27] J. Rams, J. Olivares, and J. M. Cabrela, "High-index proton-exchanged waveguides in z-cut LiNbO3 with undegraded nonlinear optical coefficients," Appl. Phys. Lett., vol. 70, no. 16, pp. 2076-2078, 1997.
[28] E. Y. B. Pun, K. Loi, and P. S. Chung, "Proton-exchanged optical waveguides in z-cut LiNbO3 using phosphoric acid," J. Lightwave Technol., vol. 11, no. 2, pp. 277-284, 1993.
[29] K. Yamamoto and T. Taniuchi, "Characteristics of pyrophosphoric acid proton-exchanged waveguides in LiNbO3," J. Appl. Phys., vol. 70, no. 11, pp. 6633-6668, 1991.
[30] M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, "High index low loss LiNbO3 waveguides," Optic. commun., vol. 62, no. 1, pp. 17-20, 1987.
[31] Alfredo Yi-Yan, "index instabilities in proton exchanged LiNbO3 waveguides," Appl. Phys. Lett., vol. 42, no. 8 ,pp. 114-115, 1983.
[32] S. Thaniyavarn, T, Findakly, D. Booher, and J. Moen, "Domain inversion effects in Ti-LiNbO3 integrated optical devices," Appl. Phys. Lett., vol.46, pp. 933-935, 1985.
[33] M. N. Armenise, "Fabrication techniques of lithium niobate waveguides," IEE Proc. J., vol. 22, pp. 85-91, 1988.
[34] Dai Jizhi, and Sun Shouyao, "Characterization of Annealed Proton-Exchanged Opticl waveguiges in LiNbO3," Acta Electronica Sinica, vol. 23, no. 5, pp. 109-111, 1995.
[35] Y. P. Liao, R. C. Lu, and W. S. Wang, "Passive Ni:LiNbO3 polarization splitter at 1.3mm wavelength," Electron. Lett., vol. 32, no. 11, pp. 1003-1005, 1996.
[36] R. S. Cheng, W. L. Cheng, and W. S. Wang, "Mach-Zehnder modulators with lithium niobate ridge waveguides by proton-exchanged wet-etch and nickel indiffusion," IEEE Photon Technol. Lett., vol. 7, no. 11, pp. 1282-1284, 1995
[37] Robert G. Hunsperger, Integrated optics: Theory and Technology, second edition, pp.37-38, 1985.
[38] W. Y. Wang and T. J. Dilaura, "Bragg effect waveguide coupler analysis," Appl. Phys. Lett., vol. 16, no. 12, pp. 3230-3233, 1977.
[39] J. H. Harris, R. Shubert, and J. N. Polky, "Beam coupling to film," J. Optic. Society. America., vol. 60, no. 11, pp. 1847-1848, 1980.
[40] Ying-Chung Chen and Chien-Chuan Cheng, "Proton-exchanged z-cut LiNbO3 waveguides for surface acoustic waves," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 43, no. 3, pp. 417-421, 1996.
[41] G. B. Hocker, W. K. Burns, "Modes in diffused optical waveguide of arbitrary index profile," IEEE J. Quantum Electron., vol. 11, no. 6, pp. 270-276, 1975.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔