[1] F. J. Leonberger, "High-speed operation of LiNbO3 electrooptic interferometric waveguide modulators," Opt. Lett., vol. 5, no. 7, pp. 312-314, 1980.
[2] W. Dolfi, M. Nazarathy, and R. L. Jungerman, ? GHz Electrooptic modulator with 7.5V driver voltage," Electron. Lett., vol. 24, no. 9, pp. 528-529, 1988.
[3] R. C. Alferness, "Waveguide electroopical modulators," IEEE Trans. on Microwave Theory and Tech., vol. MTT-30, no. 8, pp. 1121-1137, 1982.
[4] C. S. Tsai, "Guided-wave acoustoopic bragg modulators for wideband integrated optic communications and signal processing," IEEE Trans. on Circuit and Sys., vol. CAS-26, no. 12, pp. 1072-1098, 1979.
[5] T. Suzuki, O. Eknoyan, and H. F. Taylor, "Electrooptic coefficient measurements in LiNbO3 and LiTaO3," J. Lightwave Technol., vol. 11, no. 2, pp. 285-289, 1993.
[6] S. S. Lee, M. C. Oh, S. Y. Shin, and K. H. Keh, "Integrated optical high voltage sensor using a Z-cut LiNbO3 cutoff modulator," IEEE Photon. Technol. Lett., vol. 5, no. 9, pp. 996-998, 1993.
[7] A. Yariv, P. Yeh, Optical Waves in Crystals, Wiley, 1984.
[8] D. Hutcheson I. A. White, and J. J. Burke, "Comparison of bending losses in integrated optical circuits," Optics Lett., vol. 5, no. 6, pp. 276-278, 1980.
[9] S. M. Sze, VLSI Technology, 2nd ed., Mc-Graw Hill, New York, 1988.
[10] Minakata, S. Saito, M. Shibata, and S. Miyazawa, "Precise determination of refractive-index changes in Ti-diffused LiNbO3 waveguides," J. Appl. Phys., vol. 49, no. 9, pp. 4677-4682, 1978.
[11] Minakata, S. Saito, and M. Shibata, "Two-dimensional distribution of refractive index changes in Ti-diffuded LiNbO3 strip waveguides," J. Appl. Phys., vol. 50, no. 5, pp. 3063-3067, 1979.
[12] R. V. Schmidt, and I. P. Kaminow, "Metal-diffused optical waveguides in LiNbO3," Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, 1974.
[13] K. T. Koai, and P. L. Liu, "Modeling of Ti: LiNbO3 waveguide devices: Part Ⅰ-directional couplers," J. Lightwave Technol., vol. 7, no. 3, pp. 533-539, 1989.
[14] F. S. Chu, and P. L. Liu, "Simulation of Ti: LiNbO3 waveguide modulators-A comparison of simulation techniques," J. Lightwave Technol., vol. 8, no. 10, pp. 1492-1496, 1990.
[15] 林漢賓, "低損失大角度光波導彎曲及分岔的研究," 國立台灣大學電機工程研究所博士論文, 1995.[16] J. A. Fleck, Jr. J. R. Morris, and M. D. Feit, "Time-dependent propagation of high energy laser beams through the atmosphere," J. Appl. Phys., vol. 10, pp. 129-160, 1976.
[17] M. D. Feit, and J. A. Fleck, Jr., "Light propagation in graded index optical fibers," Appl. Opt., vol. 17, no. 24, pp. 3990-3998, 1978.
[18] M. D. Feit, and J. A. Fleck, Jr., "Calculation of dispersion in graded-index multimode fibers by a propagating-beam method," Appl. Opt., vol. 18, no. 16, pp. 2843-2851, 1979.
[19] M. D. Feit, and J. A. Fleck, Jr., "Mode properties and dispersion for two optical fiber-index profile by the propagating beam method," Appl. Opt., vol. 19, no. 18, pp. 3140-3150, 1980.
[20] L. Thylen, "The beam propagation method: An analysis of its applicability," Opt. Quantum Electron., vol. 15, pp. 433-439, 1983.
[21] J. Van roey, J. Van der donk, and P. E. Lagasse, "Beam-propagation method: Analysis and assessment," J. opt. Soc. Amer., vol. 73, pp. 803-810, 1981.
[22] K. T. Koai, and P. L. Liu, "Modeling of Ti: LiNbO3 devices: PartⅡ-S shaped channel waveguide bends," J. Lightwave Technol., vol. LT-7, pp.1016-1022, 1989.
[23] Y. Chung, and N. Dagli, "An assessment of finite difference beam propagation method," IEEE J. Quantum Electron., vol. QE-26, pp. 1335-1339, 1990.
[24] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, "Wet etching of proton-exchanged lithium niobate-A novel processing technique", J. Lightwave Technol. ,vol. 10, pp. 1606-1609, 1992.
[25] 陳瑞鑫, "利用溼式蝕刻法研製之脊型鈮酸鋰光波導元件", 國立台灣大學電機工程研究所博士論文, 1996.[26] 陳德榮, "鎳擴散式鈮酸鋰光波導之研製", 國立台灣大學電機工程研究所碩士論文, 1994.[27] J. Rams, J. Olivares, and J. M. Cabrela, "High-index proton-exchanged waveguides in z-cut LiNbO3 with undegraded nonlinear optical coefficients," Appl. Phys. Lett., vol. 70, no. 16, pp. 2076-2078, 1997.
[28] E. Y. B. Pun, K. Loi, and P. S. Chung, "Proton-exchanged optical waveguides in z-cut LiNbO3 using phosphoric acid," J. Lightwave Technol., vol. 11, no. 2, pp. 277-284, 1993.
[29] K. Yamamoto and T. Taniuchi, "Characteristics of pyrophosphoric acid proton-exchanged waveguides in LiNbO3," J. Appl. Phys., vol. 70, no. 11, pp. 6633-6668, 1991.
[30] M. J. Li, M. P. De Micheli, D. B. Ostrowsky, and M. Papuchon, "High index low loss LiNbO3 waveguides," Optic. commun., vol. 62, no. 1, pp. 17-20, 1987.
[31] Alfredo Yi-Yan, "index instabilities in proton exchanged LiNbO3 waveguides," Appl. Phys. Lett., vol. 42, no. 8 ,pp. 114-115, 1983.
[32] S. Thaniyavarn, T, Findakly, D. Booher, and J. Moen, "Domain inversion effects in Ti-LiNbO3 integrated optical devices," Appl. Phys. Lett., vol.46, pp. 933-935, 1985.
[33] M. N. Armenise, "Fabrication techniques of lithium niobate waveguides," IEE Proc. J., vol. 22, pp. 85-91, 1988.
[34] Dai Jizhi, and Sun Shouyao, "Characterization of Annealed Proton-Exchanged Opticl waveguiges in LiNbO3," Acta Electronica Sinica, vol. 23, no. 5, pp. 109-111, 1995.
[35] Y. P. Liao, R. C. Lu, and W. S. Wang, "Passive Ni:LiNbO3 polarization splitter at 1.3mm wavelength," Electron. Lett., vol. 32, no. 11, pp. 1003-1005, 1996.
[36] R. S. Cheng, W. L. Cheng, and W. S. Wang, "Mach-Zehnder modulators with lithium niobate ridge waveguides by proton-exchanged wet-etch and nickel indiffusion," IEEE Photon Technol. Lett., vol. 7, no. 11, pp. 1282-1284, 1995
[37] Robert G. Hunsperger, Integrated optics: Theory and Technology, second edition, pp.37-38, 1985.
[38] W. Y. Wang and T. J. Dilaura, "Bragg effect waveguide coupler analysis," Appl. Phys. Lett., vol. 16, no. 12, pp. 3230-3233, 1977.
[39] J. H. Harris, R. Shubert, and J. N. Polky, "Beam coupling to film," J. Optic. Society. America., vol. 60, no. 11, pp. 1847-1848, 1980.
[40] Ying-Chung Chen and Chien-Chuan Cheng, "Proton-exchanged z-cut LiNbO3 waveguides for surface acoustic waves," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 43, no. 3, pp. 417-421, 1996.
[41] G. B. Hocker, W. K. Burns, "Modes in diffused optical waveguide of arbitrary index profile," IEEE J. Quantum Electron., vol. 11, no. 6, pp. 270-276, 1975.