(3.238.7.202) 您好!臺灣時間:2021/03/04 02:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧信嘉
研究生(外文):Hsin-Chia Lu
論文名稱:多埠網路之量測與應用
論文名稱(外文):Multi-port network measurement methods and applications
指導教授:瞿大雄
指導教授(外文):Tah-Hsiung Chu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:118
中文關鍵詞:多埠網路埠數降低法三天線法天線散射矩陣六埠反射儀微波多向影像
外文關鍵詞:Multi-port networkPort reduction methodThree-antenna methodAntenna scattering matrixSix-port reflectometerMicrowave diversity imaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要建立三種用於多埠網路散射矩陣量測之埠數降低方法,以及建立多埠網路分別於微波影像與天線特性量測之應用。
埠數降低法是藉於多埠網路端,連接負載元件,以降低所需量測之埠數,而由較低埠數網路之散射矩陣,求解原多埠網路之散射矩陣。如此則可減少多埠網路量測儀器及校準方法之需求。當所需之量測埠數可降低至二埠時,該多埠網路則可由商用之二埠向量網路分析儀量測。在本論文中,提出三種新的埠數降低法,分別稱為第一型、第二型及第三型。對第一型及第二型埠數降低法,且其所需之量測埠數可降低至二埠。而在第三型中,對互易網路或非互易網路,則可將需測埠數降低至二埠或三埠,所使用之負載元件,並不需全為已知。此三種埠數降低法之推導過程,分別於第二至四章中敘述。由實驗結果顯示,均可得到良好之精確度。此三種埠數降低法,提供了較直接使用多埠網路分析儀簡單之校準方法與儀器需求。
論文第五章係建立一項結合三天線法、天線散射矩陣及第一型埠數降低法,以進行天線增益及結構散射之量測方法。該方法係以反射形式量測,相較於傳統之傳輸形式量測方法,可不需返回之電纜線、極化校準及標準增益天線,實驗結果顯示此方法可得到相當之精確度。
第六章則建立一使用六埠反射儀之微波多向影像量測系統,六埠反射儀係經由功率量測值,計算散射物體之反射係數,以取代習用之向量網路分析儀,以簡化量測系統並可提高量測頻率。由所得之微波影像結果,包含金屬圓柱、四根金屬細圓柱及B-52飛機模型等三種物體,顯示重建之影像品質,與使用網路分析儀相近。
由實驗結果顯示,本論文所建立之三種埠數降低法,可由使用較低埠數之網路分析儀,量得準確之多埠網路散射參數矩陣。此外所建立之兩種多埠網路應用,對於微波多向影像與天線特性量測均有相當實用價值。
In this dissertation, three port reduction methods for multi-port network measurement and two applications of multi-port network for microwave diversity imaging and antenna measurement are presented.
Port reduction method (PRM) is a method to acquire the scattering matrix of an n-port network from the scattering matrix measured at a reduced port order by terminating certain ports. This then relaxes the instrumentation requirement and calibration procedure. As the port order is reduced to two, the scattering matrix of an n-port network can be obtained from the measurement using a conventional two-port vector network analyzer. In this dissertation, we present three novel port reduction methods denoted as type I, type II and type III PRM. For type I and type II PRM, the order of measured ports can be reduced to be two. For type III PRM, the order of measured ports can be reduced to three and two for non-reciprocal and reciprocal network. The terminators used for type III PRM can be partially known. Formulations of three three methods are presented in Chapters 2 to 4. The experiment results show good accuracy. These PRMs can provide simpler calibration procedure and instrumentation than those of directly using an n-port network analyzer.
A method that combine the concept of three-antenna method, antenna scattering matrix and type I PRM for the antenna gain and structural scattering measurement is described in Chapter 5. This method can eliminate the need of long return cable and polarimetric calibration as those using transmission measurement arrangement. Experiment results shows the good accuracy obtained with this novel method.
In Chapter 6, we present a cost-effective microwave diversity imaging system using a six-port reflectometer which measures four amplitude (or power) values to acquire the object scattered field indirectly. One can then relax the complex field measurement using vector network analyzer (VNA). The calibration procedure for this microwave diversity imaging measurement is also described. Experimental results of three types of scattering objects, a metallic cylinder, four distributed line scatterers and a scaled B-52 aircraft model, are presented using the described six-port microwave imaging system.
The three port reduction methods developed in this dissertation are shown can give an accurate result with the use of reduced port VNA for an n-port network scattering matrix measurement. In addition, the two applications of multi-port network are found very useful and practical in the antenna characteristic measurement and microwave diversity imaging.
Cover
Contents
Chapter 1 Introduction
1.1 Motivation and literature survey
1.2 Chapter outline
Chapter 2 Multi-port network measurement using type I PRM
2.1 Formulation
2.2 Experiment and verification
2.3 Summary
Chapter 3 Multi-port network measurement using type Ⅱ PRM
3.1 Formulation
3.2 Experimental and verification
3.3 Summary
Chapter 4 Multi-port network measurement using type Ⅲ PRM
4.1 Formulation
4.2 Experimental and verification
4.3 Summary
Chapter 5 Antenna gain measurement using three-antenna method with type I PRM
5.1 Introduction
5.2 Furmulation
5.3 Experimental
5.4 Summary
Chapter6 Mcrowave diversity imaging using six-port reflectometer
6.1 Introdiction
6.2 Microwave diversity imaging and six-port reflectometer
6.3 Microwave imaging experiment
6.4 Summary
Chapter 7 Conclusion
7.1 Multi-port network analyzer
Chapter 8 Appendix
References
[1]R. A. Speciale, "Multiport network analyzers meeting the design need," Microwave Syst. News., vol. 10, no. 6, pp. 67-89, June 1980.
[2]R. A. Speciale, "A generalization of the TSD network-analyzer calibration procedures, covering n-port scattering parameter measurements, affected by leakage errors," IEEE Trans. Microwave Theory and Tech., vol. MTT-25, no. 12, pp. 1100-1115, Dec. 1977.
[3] P. C. Sharma and K. C. Gupta, "A generalized method for de-embeddeing of multiport networks," IEEE Trans. Inst. Measurement, vol. IM-30, no. 4, pp. 305-307, Dec. 1981.
[4]A. Ferrero, U. Pisani, and K. J. Kerwin, "A new implementation of a multiport automatic network analyzer," IEEE Trans. Microwave Theory and Tech., vol. MTT-40, no. 11, pp. 2078-2085, Nov. 1992.
[5]A. Ferrero, F. Sanpertro, and U. Pisani, "Multiport vector network analyzer calibration: a general formulation," IEEE Trans. Microwave Theory and Tech., vol. MTT-42, no. 12, pp. 2455-2461, Dec. 1994.
[6]A. Ferrero and F. Sanpertro, "A simplified algorithm for leaky network analyzer calibration," IEEE. Microwave and Guided Wave Letters, vol. 5, no. 4, pp. 119-121, Apr. 1995.
[7]S. H. Li and R. G. Bosisio, "The automatic measurement of n-port microwave junctions by means of six-port technique," IEEE Trans. Inst. Measurement, vol. IM-31, no. 1, pp. 40-43, Mar. 1982.
[8]F. M. Ghannouchi, "A calibration and measurement method of a tri-six-port network analyzer suitable for on-wafer characterization of three-port devices," IEEE Trans. Inst. Measurement, vol. IM-42, no. 4, pp. 864-866, Aug. 1993.
[9]J. C. Tippet and R. A. Speciale, "A rigorous technique for measuring the scattering matrix of a multiport device with a two-port network analyzer," IEEE Trans. Microwave Theory and Tech., vol. MTT-30, no. 5, pp. 661-666, May 1982.
[10]D. Woods, "Multiport-network analysis by matrix renormalization employing voltage-wave S-parameters with complex normalization," Proc. of Inst. Elec. Eng., vol. 124, no. 3, pp. 198-204, Mar. 1977.
[11]D. Woods, "Multiport-network analysis by matrix renormalization: extension to four ports," Proc. of Inst. Elec. Eng., vol. 124, no. 9, pp. 749-753, Sep. 1977.
[12]D. Woods, "Multiport-network analysis by matrix renormalization: extension to 5- and 6-ports," Proc. of Inst. Elec. Eng., vol. 125, no. 11, pp. 1217, Nov. 1978.
[13]R. A. Speciale, "Derivation of the generalized scattering parameter renormalization transformation," Proc. IEEE CAS Int. Symp. Circuits System., pp. 177-169, Apr. 28-30, 1980.
[14]H. Dropkin, "Comments on ''A rigorous technique for measuring the scattering matrix of a multiport device with a two-port network analyzer''," IEEE Trans. Microwave Theory and Tech., vol. MTT-31, no. 1, pp. 79-81, Jan. 1983.
[15]W. Lin and C. Ruan, "Measurement and calibration of a universal six-port network analyzer," IEEE Trans. Microwave Theory and Tech., vol. MTT-37, no. 4, pp. 734-742, Apr. 1989.
[16]M. Davidovitz, "Reconstruction of the S-matrix for a 3-port using measurements at only two ports," IEEE Microwave and Guided Wave Letters, vol. 5, no. 10, pp. 349-350, Oct. 1995.
[17]J. C. Rautio, "Comments on ''Reconstruction of the S-matrix for a 3-port using measurements at only two ports''," IEEE Microwave and Guided Wave Letters, vol. 6, no. 4, pp. 183, Apr. 1996.
[18]J. S. Hollis, T. J. Lyon, and L. Clayton, Microwave Antenna Measurements, Ch.8, Scientific-Atlanta Inc. 1970.
[19]J. S. Hollis, T. J. Lyon, and L. Clayton, Microwave Antenna Measurements, Ch.2, Scientific-Atlanta Inc. 1970.
[20]D. D. King, "Measurement and interpretation of antenna scattering," Proc. IRE., vol. 37, pp. 770-777, July 1949.
[21]R. J. Garbacz, "Determination of antenna parameters by scattering cross section measurements," Proc. Inst. Elect. Eng., vol. 111, no. 10, pp. 1679-1686, Oct. 1964.
[22]J. Appel-Hansen, "Accurate determination of gain and radiation patterns by radar cross-section measurements," IEEE Trans. Antennas Propagat., vol. AP-27, pp. 640-646, Sept. 1979.
[23]J. J. H. Wang, C. W. Choi, and R. L. Moore, "Precession experimental characterization of the scattering and radiation properties of antennas," IEEE Trans. Antennas Propagat., vol. AP-30, pp. 108-112, Jan. 1982.
[24]K. M. Lambert, R. C. Rudduck, and T. H. Lee, "A new method for obtaining antenna gain from backscatter measurements," IEEE Trans. Antennas Propagat., vol. AP-38, pp.896-902, June 1990.
[25]W. Wiesbeck and E. Heidrich, "Wide-band multiport antenna characterization by polarimetric RCS measurement," IEEE Trans. Antennas Propagat., vol. AP-46, pp. 341-350, March 1998.
[26]C. A. Hoer, "The six-port coupler: a new approach to measuring voltage, current, power, impedance, and phase," IEEE Trans. Instrum. Meas., vol. IM-21, pp. 466-470, Nov. 1972.
[27]G. F. Engen and C. A. Hoer, "Application of an arbitrary 6-port junction to power-measurement problem," IEEE Trans. Instrum. Meas., vol. IM-21, pp. 470-474, Nov. 1972.
[28]R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans. Antennas Propagat., vol. AP-24, pp. 308-314, May 1969.
[29]N. N. Bojarski, "A survey of physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. AP-30, pp. 980-989, Sept. 1982.
[30]N. H. Farhat, "Microwave diversity imaging and automated target identification based on models of neural networks," Proc. IEEE., vol. 77, pp. 670-680, May 1989.
[31]W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C -- The Art of Scientific Computing, Ch.2, Cambridge University Press. 1988.
[32]W. Weisbeck and Kahny, "Single reference, three target calibration and error correction for monostatic, polarimetric free space measurement," Proc. IEEE, vol. 79, pp. 1551-1558, Oct. 1991.
[33]G. F. Engen, "Calibration of an arbitrary six-port junction for measurement of active and passive circuit parameters," IEEE Trans. Instrum. Meas., vol. IM-22, pp. 295-299, Dec. 1973.
[34]G. F. Engen, "Calibrating the six-port reflectometer by means of sliding terminations," IEEE Trans. Microwave Theory and Tech., vol. MTT-26, pp. 951-957, Dec. 1978.
[35]G. F. Engen and C. A. Hoer, " ''Thru-reflect-line'': an improved technique for calibrating the dual six-port automatic network analyzer," IEEE Trans. Microwave Theory and Tech., vol. MTT-27, pp. 987-993, Dec. 1979.
[36]T. H. Chu and D. B. Lin, "On microwave imagery using Bojarski''s identity," IEEE Trans. Microwave Theory and Tech., vol. MTT-37, pp. 1141-1144, July 1989.
[37]G. T. Herman, Image reconstruction from projection - implementation and application, New York: Springer-Verlag, 1979.
[38]I. Kasa, "Closed-form mathematical solutions to some network analyzer calibration equations," IEEE Trans. Instrum. Meas., vol. IM-23, pp. 399-402, Dec. 1974.
[39]G. F. Engen, "An improved circuit for implementing the six-port technique of microwave measurement," IEEE Trans. Microwave Theory and Tech., vol. MTT-27, pp. 847-853, Oct. 1979.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔