(3.215.180.226) 您好!臺灣時間:2021/03/06 16:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁若敏
研究生(外文):Ro-Min Weng
論文名稱:新型電流式泛用濾波器設計
論文名稱(外文):The Design of New Current-Mode Universal Filters
指導教授:陳良基陳良基引用關係劉深淵
指導教授(外文):Liang-Gee ChenShen-Iuan Liu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:90
中文關鍵詞:電流式放大器類比濾波器泛用二階濾波器靈敏度電流傳輸器電流追隨器電流回授放大器
外文關鍵詞:current mode amplifiersanalog filteruniversal biquad filtersensitivitycurrent conveyorcurrent followercurrent feedback amplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統類比電路以電壓式運算放大器為設計重點,近年來電流式放大器亦成為電路設計趨勢之一。利用電流式放大器比電壓式放大器具有更多優點,如電路簡單、較精確、頻寬較佳、動態範圍較大......等等。本論文著眼於使用電流式放大器的新型類比濾波器設計,特別是泛用二階濾波器的合成。三種常見的電流式放大器分別是電流傳輸器(CC)、電流追隨器(CF)、與電流回授放大器(CFA)。處理電流訊號的泛用二階濾波器具有單端輸入和三端輸出的電路架構,而處理電壓訊號的泛用二階濾波器具有三端輸入和單端輸出的電路架構。
所提出的新型濾波器電路具有下列優點:(i)不須改變電路架構或更換被動元件,即可同時實現高通、低通、帶通、帶拒與全通等五種濾波函數;(ii)具有與品質因數無關的甚低主動與被動靈敏度;(iii)濾波器特性參數由被動元件控制且不須任何元件匹配條件。
本論文之探討重點在於不影響電路特性要求下,如何減少主動與被動元件的數目,以便將來製成積體電路時可大幅縮小晶片面積。另一方面,設計時考量積體電路製程限制,被動元件儘可能選擇接地。
新型濾波器電路的精確性均經由PSPICE模擬與實驗驗證無誤。
This dissertation focuses on the design of universal biquadratic filters using current-mode amplifiers such as current conveyors (CCs), current followers (CFs) and current-feedback amplifiers (CFAs). The proposed current-mode universal filters are based on circuit structures with single-input terminal and three-output terminals (SITO). On the other hand, the proposed voltage-mode universal filters are based on circuit structures with three-input terminals and single-output terminal (TISO).
The presented configurations provide the following advantages: (i) The highpass, bandpass, lowpass, notch and allpass filtering functions can be realized without changing circuit topology and elements. (ii) The active and passive sensitivities of the new filters are extremely low and are independent of quality factors. (iii) There are no component-matching conditions needed for the new universal filters.
The main aim of this thesis would be less number of active and passive elements required for the new universal filters. To minimize the number of active elements as well as passive elements will significantly reduce the chip area of the integrated circuits. In addition, the passive elements, resistors and capacitors, are chosen to be grounded in order to fabricate the integrated circuits.
PSPICE Simulation and experimental results that confirm the theoretical analysis are obtained for the proposed universal filters.
COVER
CONTENT
Chapter 1 Introduction
1.1 Motivation
1.2 Thesis Organization
Chapter 2 Current-mode Amplifier
2.1 Current Conveyor(CC)
2.2 Current-Feedback Amplifier(CFA)
2.3 Current Follower(CF)
2.4 Other Current-mode Amplifiers
Chapter 3 New Universal Filter Employing Three Followers
3.1 Design Concept
3.2 Current-mode universal biquad filters
3.3 Voltage-mode universal biquad filters
3.4 Sensitivity Analysis
3.5 Simulation Results
3.6 Discussion
Chapter 4 New Universal Filters Using Two Followers
4.1 Design Concept
4.2 Circuit Description
4.3 Sensitivity Analysis
4.4 Simulation Results
4.5 Discussion
Chapter 5 New Voltage-Mode Filters Using Two Current Conveyors
5.1 Desing Concept
5.2 Circuit Description
5.3 Sensitivity Analysis
5.4 Simulation Results
5.5 Discussion
Chapter 6 NewInsensitive Multifunction Filters Using One Current-Feedback Amplifier
6.1 Design Concept
6.2 Circuit Description
6.3 Sensitivity Analysis
6.4 Simulation Results
6.5 Discussion
CHpater 7 Cascadable nth-order Fiter Using (n-1) Current-Feedback Amplifiers
7.1 Design Concept
7.2 Realization of nth-order Series Impedance Function
7.3 Application to Filters
7.4 Experimental Results
7.5 Discussion
Chapter 8 Conclusion
References
[1] C. Toumazou, F. J. Lidgey and D. G. Haigh, Analog IC design: the current-mode approach. London: Peter Peregrinus, 1990.
[2] C. Toumazou, F. J. Lidgey and C. A. Makris, "Extending voltage-mode op amps to current-mode performance", IEE Proceedings Circuits, Devices and Systems, vol. 137, No. 2, pp. 116-130, 1990.
[3] B. Wilson, "Recent developments in current conveyors and current-mode circuits", IEE Proceedings Circuits, Devices and Systems, vol. 137, No. 2, 63-77, 1990.
[4] G. W. Roberts and A. S. Sedra, "All current-mode frequency selective circuits", Electronics Letters, vol. 25, (12), pp. 759-761, 1989.
[5] J. Rami''rez-angulo and E. Sa''nchez-sinencio, "High frequency compenated current-mode ladder filters using multiple output OTAs", IEEE Trans. Circuits and System-II, vol. 41, pp. 581-585, 1994.
[6] A. Fabre, O. Said, F. Wiest and C. Boucheron, " High frequency applications based on a new current controlled conveyors", IEEE Trans. Circuits and System-I, vol. 43, pp. 82-91, 1996.
[7] A. Payne and C. Toumazou, "Analog amplifiers: classification and generalization", IEEE Trans. Circuits and Systems-I, vol. 43, pp. 43-50, 1996.
[8] H. O. Elwan and A. M. Soliman, "Novel CMOS differential voltage current conveyor and its applications", IEE Proceedings Circuits, Devices and System, vol. 144, No. 3, pp. 195-200, 1997.
[9] J. Wu and E. El-Masry, "Current-mode ladder filters using multiple output current conveyors", IEE Proceedings Circuits, Devices and System, vol. 143, No. 4, pp. 218-222, 1996.
[10] R. Senani and V. K. Singh, "Single-resistance controlled sinusoidal oscillator employing single current conveyors IC", Electronics Letters, vol. 28, pp. 414-415, 1992.
[11] S. I. Liu, "Single-resistance controlled/voltage-controlled oscillator using current conveyors and grounded capacitors", Electronics Letters, vol. 31, pp. 337-338, 1995.
[12] M. T. Abuelma''atti and A. A. Al-Ghumaiz, "Novel CCI-based single-element- controlled oscillators employing grounded resistors and capacitors", IEEE Trans. Circuits and Systems-I, vol. 43, pp. 153-155, 1996.
[13] W. Chiu, S. I. Liu, H. W. Tsao and J. J. Chen, " CMOS differential difference current conveyors and their applications", IEE Proceedings Circuits, Devices and System, vol. 143, No. 2, pp. 91-96, 1996.
[14] I. A. Awad and A. M. Soliman, "Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications", Int. J. Electronics, vol. 86, No. 4, pp. 413-432, 1999.
[15] K. C. Smith and A. Sedra, "The current conveyor: A new circuit building block", IEEE Trans., CT-15, pp. 1368-1369, 1968.
[16] A. Sedra and K. C. Smith, "A second-generation current conveyor and its applications", IEEE Trans., CT-17, pp. 132-134, 1970.
[17] A. Fabre, "Third-generation current-conveyor: a new helpful active element", Electronics Letters, vol. 31, pp. 338-339, 1995.
[18] S. Celma. P. A Martinez and A. Carlosena, "Current-feedback amplifiers based sinusoidal oscillators", IEEE Trans. Circuits and System-I, vol. 41, 12, pp. 906-908, 1994.
[19] M. T. Abuelma''atti, A. A. Farooqi and Alshahrani, "Novel RC oscillators using current-feedback operational amplifier", IEEE Trans. Circuits and Systems-I, vol-43, pp. 155-157, 1996.
[20] B. Wilson, "Constant bandwidth voltage amplification using current conveyors", Int. J. Electronics, vol. 65, pp. 275-279, 1986.
[21] F. J. Lidgey and C. Toumazou, "Accurate current-follower" Electron Wireless World, pp. 17-19, April 1985.
[22] S. I. Liu, J. J. Chen and Y. S. Hwang, "New current-mode biquad filters using current followers", IEEE Trans. Circuits and Systems, vol. 42, pp. 380-383, 1995.
[23] S. Celma, J. Sabadell and P. Martinez, "Universal filter using unity-gain cells", Electronics Letters, vol. 31, (21), pp. 1817-1818, 1995.
[24] S. I. Liu, J. J. Chen and J. H. Tsay, "New Insensitive notch and allpass filters with a single current follower", Electronics Letters, vol. 27, (8), pp. 1712-1713. 1991.
[25] S. I. Liu, J. J. Chen, H. W. Tsao and J. H. Tsay, " Design of biquad filters with a single current follower", IEE Proceedings Circuits, Devices and Systems, vol. 140, (3), pp. 165-170, 1993.
[26] G. W. Roberts and A. S. Sedra, "A general class of current amplifier-based biquadratic filter circuit", IEEE Trans. Circuits and Systems, vol. 39, pp. 257-263, 1995.
[27] S. W. Director and R. A. Rohrer, "The generalized adjoint network and network sensitivities", IEEE Trans. Circuit Theorey, vol. 16, pp. 318-32, 1969.
[28] A. Fabre and M. Alami, "Universal current-mode biquad implemented from two second-generation current conveyors", IEEE Trans. Circuits and Systems, vol. 42, (7), pp. 383-385. 1995.
[29] A. M. Soliman, "Current-mode universal filter", Electronics Letters, vol. 31, pp.1420-1421, 1995.
[30] S. Clema, P. A. Martinez and J. Sabadell, "A transformation method for equivalent infinite-gain op amp to unity-gain CCII networks," IEEE Trans. Circuits and Systems I, vol. 43, pp. 61-63, 1996
[31] M. T. Abuelma''atti and M. A. Al-Qahtani, "Current-mode universal filters using unity gain cells", Electronics Letters, vol. 32, pp. 1077-1078, 1996.
[32] C. Acar and S. Ozoguz, "High-order voltage transfer function synthesis using CCII+ based unity gain current amplifiers", Electronics Letters, vol. 32, pp. 2030-2031, 1996.
[33] R. M. Weng and M. H. Lee, "Novel universal biquad filters using only three followers", Int. J. Electronics, vol. 82, pp. 621-628, 1997.
[34] E Gunes and F. Anday, "Realization of voltage and current-mode transfer functions using unity gain cells", Int. J. Electronics, vol. 83, pp. 209-213, 1997.
[35] W. Kerwin, L. Huelsman and Newcomb," State variable synthesis for insensitive integrated circuit transfer function", IEEE J. Solid State Circuits, SC-2, pp. 87-92, 1967.
[36] T. Tsukutani, M. Ishida and Y. Fukui, "Current-mode biquad without external passive element", Electronics Letters, vol. 32. (3), pp. 197-198, 1996.
[37] A. M. Soliman, "Kerwin-Huelsman-Newcomb circuit using current conveyors", Electronics Letters, vol. 30, pp. 2019-2020, 1994
[38] R. Senani and V. K. Singh, "KHN-equivalent biquad using current conveyors", Electronics Letters, vol. 31, pp. 626-628, 1995.
[39] A. M. Soliman, "New inverting/non-inverting bandpass and lowpass biquad circuit using current conveyors", Int. J. Electronics, vol.81, pp.577-583, 1996.
[40] M. T. Abuelma''atti and S. M. Al-Shahrani, "New universal filter using two current-feedback amplifiers", Int. J. Electronics, vol. 80, pp. 753-756, 1996.
[41] C. M. Chang and M. S. Lee, "Comment: Universal voltage-mode filter with three-inputs and one-output using three current conveyors and one voltage follower", Electronics Letters, vol. 31, pp. 353, 1995.
[42] J. W. Horng, M. H. Lee, H. C. Chen and C. W. Chang, "New CCII-based universal filter using two current conveyors", Int. J. Electronics. vol. 82, pp. 151-155, 1997.
[43] J. W. Horng, C. C. Tsai and M. H. Lee, "Novel universal voltage biquad filter with three inputs and one output using only two current conveyors", Int. J. Electronics, vol. 80, pp. 543-546, 1996.
[44] S. I. Liu, "Universal filter using two current-feedback amplifiers", Electronics Letters, vol. 31, pp. 629-630, 1995.
[45] S. I. Liu and J. L. Lee, "Voltage-mode universal filter using two current conveyors", Int. J. Electronics, vol. 82, pp. 145-149, 1997.
[46] S. I. Liu and J. L. Lee, "Insensitive current/voltage-mode filters using FTFNs", Electronics Letters, vol. 32, pp. 1070-1080, 1996.
[47] S. Ozoguz and E. O. Gunes, "Universal filter with three inputs using CCII+", Electronics Letters, vol. 32, pp. 2134-2135, 1996.
[48] M. Higashimura, "Realisation of voltage-mode biquads using CCII+", Electronics Letters, vol. 27, pp1345-1346, 1991.
[49] C. M. Chang, "Novel universal current-mode filter with single input and three outputs using only five current conveyors", Electronics Letters, vol. 29, pp. 2005-2006, 1993.
[50] M. T. Abuelma''atti and M. H. Khan, "Low component current-mode universal filter", Electronics Letters, vol. 31, pp. 2160-2161, 1995.
[51] J. H. Horng, M. H. Lee and C. L. Hou, "Universal active filter using four OTAs and one CCII", Int. J. Electronics, vol. 78, pp. 903-906, 1995.
[52] T. Tsukutani, M. Ishida, S. Tsuki and Y. Fukui, "Versatile current-mode biquad filter using multiple current output OTAs", Int. J. Electronics, vol. 78, pp. 533-541, 1996.
[53] S. Ozoguz and C. Acar, "Universal current-mode filter with reduced number of active and passive components", Electronics Letters, vol. 33, pp. 948-949, 1997.
[54] W. Kiranon, J. Kesorn, W. Sangpisit and N. Kamprasert, "Electronically tunable multifunctional translinear-C filter and oscillator", Electronics Letters, vol. 33, pp. 948-949, 1997.
[55] M. T. Abuelma''atti and N. A. Tasadduq, "New current-mode current-controlled conveyor", Int. J. Electronics, vol. 85, pp. 483-488, 1998.
[56] J. Wu and E. I. El-Masry, "Universal voltage-and Current-mode OTAs based biquads", Int. J. Electronics, vol. 85, pp. 553-560, 1998.
[57] S. Ozoguz and C. Acar, "Single-input and Three-output current-mode universal filter using a reduced number of active elements", Electronics Letters, vol. 34, pp. 605-606, 1998.
[58] C. M. Chang, C. S. Hwang and S. H. Tu, "Voltage-mode notch, lowpass and bandpass filter using current-feedback amplifiers", Electronics Letters, vol. 30, pp. 2022-2023, 1994.
[59] A. Fabre, "Gyrator implementation from commercially available trans-impedances opamps", Electronics Letters, vol. 28, pp. 263-264, 1992.
[60] A. Fabre, "Insensitive voltage-mode and current-mode filters from commercially available transimpedances opamps", IEE Proceeding Circuits, Devices and Systems, vol. 5, pp. 319-321, 1993.
[61] J. H. Horng, and M. H. Lee, "High input impedance voltage-mode lowpass, bandpass and highpass filters using current-feedback amplifier", Electronics Letters, vol. 33, pp. 941-942, 1997.
[62] Analog Devices, Linear products data book, Norwood, MA, U.S.A., 1990.
[63] S. I. Liu, "High input impedance filters with low component spread using current-feedback amplifier", Electronics Letters, vol. 31, pp. 1042-1043, 1995.
[64] S. I. Liu and Y. S. Hwang, "Realization of R-L and C-D impedance using a current-feedback amplifier and its application". Electronics Letters, vol. 30, pp. 380-381, 1994.
[65] S. I. Liu and D. S. Wu, "New current-feedback amplifier-based universal biquadratic filters", IEEE Trans. Circuits and Systems, vol. 44, pp. 915-917, 1995.
[66] G. W. Roberts and A. S. Sendra, "A general class of current amplifier-based biquadratic filter circuit", IEEE Trans Circuits and Systems, vol. 39, pp. 257-263, 1992.
[67] D. S. Wu, H. T. Lee, Y. S. Hwang and Y. P. Wu, "CFA-based universal filter deduced from a Mason graph", Int. J. Electronics, vol. 77, pp. 1059-1065, 1994.
[68] M. Bhusan and R. W. Newcomb, "Grounding of capacitors in integrated circuits", Electronics Letters, vol. 25, pp. 50-01 1986.
[69] K. Pal and R. Singh, " Inductorless current conveyors allpass filter using grounded capacitors", Electronics Letters, vol. 18, pp. 47, 1982.
[70] C. Acar, "Nth-order voltage transfer function synthesis using a commercially available active component: Signal-flow graph approach", Electronics Letters, vol. 32, pp. 1933-1934, 1996.
[71] C. M. Chang, H. Y. Wang and C. C. Chien, "Realization of series impedance functions using one CCII+", Int. J. Electronics, vol. 76, 83-85, 1994.
[72] M. Higashimura and Y. Fukui, "Novel method for realising higher-order imittance function current conveyors", IEEE International Symposium on Circuits and Systems, pp. 2677-2680, 1988.
[73] S. I. Liu and C. Y. Yang, "Higher-order immittance function synthesis using CCIIIs", Electronics Letters, vol. 32, pp. 2295-2296, 1996.
[74] A. K. Singh and R. Senani, "Low-component-count active-only immittances and their application in realising simple multifunction biquads", Electronics Letters, vol. 34, pp. 718-719, 1998.
[75] A. M. Soliman, "Generalised immittance inverters and their realisations", Int. J. Electronics, vol. 41, pp. 59-64, 1976.
[76] J. A. Svoboda, L. Mcgory and S. Webb, "Application of a commercially available current conveyors", Int. J. Electronics, vol. 70, pp. 159-164, 1991.
[77] H. Y. Wang and C. T. Lee, "Immittance function simulator using a single current conveyor", Electronics Letters, vol. 33, pp. 574-575, 1997.
[78] H. Y. Wang and C. T. Lee, "Realisation of R-L and C-D immittances using single FTFN", Electronics Letters, vol. 34, pp. 502-503, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔