(3.235.11.178) 您好!臺灣時間:2021/02/26 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張世軍
研究生(外文):Shih-Jung Chang
論文名稱:鈮酸鋰電光調變器之改良研究
論文名稱(外文):A study of improved lithium niobate electro-optic modulators
指導教授:王維新王維新引用關係
指導教授(外文):Way-Seen Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:117
中文關鍵詞:鈮酸鋰電光調變器光波導脊型結構馬赫任德調變器重疊積分值
外文關鍵詞:lithium niobateelectro-optic modulatoroptical waveguideridge structureMach-Zehnder modulatorOverlap integral factor
相關次數:
  • 被引用被引用:7
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對鈮酸鋰電光調變器而言,操作電壓是評量元件的重要指標之一,而影響操作電壓的大小,主要是材料的電光係數,及外加電場與光場的重疊積分值。本論文主要是研究以其他金屬代替鈦金屬或質子交換法光波導之可行性,藉由其他具有良好性質的光波導來改善元件的操作電壓,此光波導應避免傳統上高溫擴散所形成的外擴散層,以免影響光波導的特性及鈮酸鋰晶體的電光特性。另外,利用質子交換溼式蝕刻技術可以在鈮酸鋰晶體上,製作出脊型結構之光波導,藉由脊型結構的輔助,可有效的增加光場與外加電場的重疊積分值,更進一步地降低了元件的操作電壓。
封面
目錄
致謝
摘要
第一章 緒論
1-1 積體光學簡介
1-2 鈮酸鋰光波導之介紹
1-3 脊型結構的光波導
1-4 研究動機
1-5 內容概述
第二章 鈮酸鋰光波導之製程
2-1 鈮酸鋰晶體的物理性質
2-2 光波導元件之製程
第三章 鎳、鋅、鎂誘鋰外擴散式光波導
3-1 金屬離子對鈮酸鋰晶體折射率的影響
3-2 擴散式光波導折射率分佈之模型
3-3 導光條件之研究
第四章 脊型鈮酸鋰光波導
4-1 脊型光波導的特性
4-2 脊型結構的製程
4-3 溼式蝕刻脊型光波導之製程
4-4 質子交換法
第五章 重疊積分值對元件調變電壓的影響
5-1 電極結構
5-2 重疊積分值的影響
第六章 馬赫任德調變器的製作與量測
6-1 馬赫任德調變器的簡介
6-2 金屬擴散式馬赫任德調變器的製作與量測
6-3 質子交換法馬赫任德調變器的製作與量測
6-4 脊型結構馬赫任德調變器的製作與量測
第七章 結論與未來展望
參考文獻
附表
附圖
中英文名詞對照表
其他
[1]H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuit, McGraw-Hill, 1985.
[2]M. N. Armenise, "Fabrication techniques of lithium niobate waveguides," IEE Proc., vol. 135, no. 2, pp. 85-91, 1988.
[3]T. Tamir, Guided-Wave Optoelectronics, Springer-Verlag, 1988.
[4]C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, "Fabrication of strip load outdiffusion guides on lithium niobate substrate," Microwave and Optical Technol. Lett., vol. 5, no. 7, pp. 309-313, 1992.
[5]C. S. Lau, S. F. Liu, P. K. Wei, and W. S. Wang, "A Mach-Zehnder interferometer made of strip-loaded outdiffusion guide," Microwave and Optical Technol. Lett., vol. 12, pp. 611-613, 1992.
[6]A. Loni, G. Hay, R. M. De La Rue, and J. M. Winfield, "Proton-exchanged LiNbO3 waveguide: The effects of post-exchange annealing and buffered melts as determined by infrared spectroscopy, optical waveguide measurements, and hydrogen isotopic exchange reactions," J. Lightwave Technol., vol. 7, no. 6, pp. 911-919, 1989.
[7]I. Savantinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, "Electro-opitc effect in proton exchanged LiNbO3 and LiTaO3 waveguides," J. Lightwave Technol., vol. 14, no. 3, pp. 403-409, 1996.
[8]G. J. Griffiths and R. J. Esdaile, "Analysis of titanium-diffused planar optical waveguides in lithium niobate," IEEE J. Quantum Electron., vol. 20, no. 2, pp. 149-159, 1984.
[9]J. L. Jackel, "Suppression of outdiffusion in titanium-diffused LiNbO3," J. Opt. Commun., vol. 3, pp., 82-85, 1982.
[10]B.-U. Chen and A. C. Pastor, "Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3," Appl. Phys. Lett., vol. 30, no. 11, pp. 570-571, 1977.
[11]P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, "Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation," Opt. Lett., vol. 13, no. 11, pp. 1050-1052, 1988.
[12]F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, "Wet etching of proton-exchanged lithium niobate - a novel processing technique," J. Lightwave Technol., vol. 10, pp. 1060-1069, 1993.
[13]K. Noguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, "Highly efficient 40GHz bandwidth Ti-LiNbO3 optical modulator employing ridge structure," IEEE Photon. Technol. Lett., vol. 5, pp. 52-54, 1993.
[14]D. Marcuse, "Optimal electrode design for integrated optics modulators," IEEE J. Quantum Electron., vol. 18, no. 3, pp. 393-398, 1982.
[15]C. M. Kim and R. V. Ramaswamy, "Overlap integral factors in integrated optic modulators and switches," J. Lightwave Technol., vol. 7, no. 7, pp. 1063-1070, 1989.
[16]G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, ?GHz low half-wave voltage Ti:LiNbO3 intensity modulator," Electron. Lett., vol. 28, no. 9, pp. 826-827, 1992.
[17]M. N. Armenise, "Fabrication techniques of lithium niobate waveguides," IEE Proc., vol. 135, no. 2, pp. 85-91, 1988.
[18]R. V. Schmidt and I. P. Kaminow, "Metal diffused optical waveguides in LiNbO3," Appl., Phys., Lett., vol. 25, no. 8, pp. 458-460, 1974.
[19]M. Minakata, S. Saito, M. Shibata, and S. Miyazawa, "Precise determination of refractive-index changes in Ti-diffused LiNbO3 optical waveguides," J. Appl. Phys., vol. 49, no. 9, pp. 4677-4682, 1978.
[20]C. M. Kim and R. V. Ramaswamy, "Modeling of graded-index channel waveguides using nonuniform finite difference method," J. Lightwave Technol., vol. 7, no. 10, pp. 1581-1509, 1989.
[21]W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, "Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate," J. Lightwave Technol., vol. 10, no. 9, pp. 1238-1246, 1992.
[22]B. Herreros and G. Lifante, "LiNbO3 optical waveguides by Zn diffusion from vapor phase," Appl. Phys. Lett., vol. 66, no. 12, pp. 1449-1451, 1995.
[23]F. Schiller, B. Herreros, and G. Lifante, "Optical characterization of vapor Zn-diffused waveguides in lithium niobate," J. Opt. Soc. Am. A, vol. 14, no. 2, pp. 425-429, 1997.
[24]C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, "Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides," IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 872-875, 1992.
[25]H. Haga, M. Izutsu, and T. Sueta, "LiNbO3 traveling-wave light modulator/switch with an etched groove," IEEE J. Quantum Electron., vol. 22, pp. 902-906, 1986.
[26]K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, "A broadband Ti:LiNbO3 optical modulator with a ridge structure," J. Lightwave Technol., vol. 13, no. 6, pp. 1164-1168, 1995.
[27]K. Kawano, "High-speed shielded velocity-matched Ti:LiNbO3 optical modulator," IEEE J. Quantum Electron., vol. 29, no. 9, pp. 2466-2475, 1993.
[28]Y. Ohmachi and J. Noda, "Electro-optic light modulator with branched ridge waveguide," Appl. Phys. Lett., vol. 27, pp 544-546, 1975.
[29]J. L. Jackel, R. E. Howard, E. L. Hu, and S. P. Lyman, "Reactive ion etching of LiNbO3," Appl. Phys. Lett., vol. 38, pp. 907-909, 1981.
[30]W. L. Chen, R. S. Cheng, J. H. Lee, and W. S. Wang, "Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet-etching," IEEE Photon. Technol. Lett., vol. 7, pp. 1318-1320, 1995.
[31]J. L. Jackel, C. E. Rice and J. J. Veselka, "Proton exchange for high-index waveguides in LiNbO3," Appl. Phys. Lett., vol. 41, no. 7, pp. 607-608, 1982.
[32]K. Yamamoto and T. Taniuchi, "Characteristics of pyrophosphoric acid proton-exchanged waveguide in LiNbO3," J. Appl. Phys., vol. 70, no. 11, pp. 6663-6668, 1991.
[33]K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol., vol. 3, no. 2, pp. 385-391, 1985.
[34] W. C. Chang, S. J. Chang, C. Y. Sue, and C. L. Hsu, "Characteristic of proton-exchanged wet-etching on z-cut nickel-indiffused lithium niobate," Microwave and Optical Technol. Lett., vol. 18, no. 4, pp. 250-252, 1998.
[35]A. Reisinger, "Characteristics of optical guided modes in lossy waveguides," Appl. Optics, vol. 12, no. 5, pp. 1015-1025, 1973.
[36]M. Masuda and J. Koyama, "Effects of a buffer layer on TM modes in metal-clad optical waveguide using Ti-diffused LiNbO3 c-plate," Appl. Optics, vol. 16, no. 11, pp. 2994-3000, 1977.
[37]S. J. Chang, C. L. Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, "Improved electro-optic modulator with ridge structure in x-cut LiNbO3," J. Lightwave Technol., vol. 17, no. 5, pp. 843-847, 1999.
[38]W. E. Martin, "A new waveguide switch/modulator for integrated optics," Appl. Phys. Lett., vol. 26, no. 10, pp. 562-564, 1975.
[39]D. H. Naghski, J. T. Boyd, H. E. Jacckson, S. Sriram, S. A. Kingsley, and J. Latess, "An integrated photonic Mach-Zehnder inteferometer with no electrodes for sensing electric fields," J. Lightwave Technol., vol. 12, no. 6, pp. 1092-1097, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔