|
[1]H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuit, McGraw-Hill, 1985. [2]M. N. Armenise, "Fabrication techniques of lithium niobate waveguides," IEE Proc., vol. 135, no. 2, pp. 85-91, 1988. [3]T. Tamir, Guided-Wave Optoelectronics, Springer-Verlag, 1988. [4]C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, "Fabrication of strip load outdiffusion guides on lithium niobate substrate," Microwave and Optical Technol. Lett., vol. 5, no. 7, pp. 309-313, 1992. [5]C. S. Lau, S. F. Liu, P. K. Wei, and W. S. Wang, "A Mach-Zehnder interferometer made of strip-loaded outdiffusion guide," Microwave and Optical Technol. Lett., vol. 12, pp. 611-613, 1992. [6]A. Loni, G. Hay, R. M. De La Rue, and J. M. Winfield, "Proton-exchanged LiNbO3 waveguide: The effects of post-exchange annealing and buffered melts as determined by infrared spectroscopy, optical waveguide measurements, and hydrogen isotopic exchange reactions," J. Lightwave Technol., vol. 7, no. 6, pp. 911-919, 1989. [7]I. Savantinova, S. Tonchev, R. Todorov, M. N. Armenise, V. M. N. Passaro, and C. C. Ziling, "Electro-opitc effect in proton exchanged LiNbO3 and LiTaO3 waveguides," J. Lightwave Technol., vol. 14, no. 3, pp. 403-409, 1996. [8]G. J. Griffiths and R. J. Esdaile, "Analysis of titanium-diffused planar optical waveguides in lithium niobate," IEEE J. Quantum Electron., vol. 20, no. 2, pp. 149-159, 1984. [9]J. L. Jackel, "Suppression of outdiffusion in titanium-diffused LiNbO3," J. Opt. Commun., vol. 3, pp., 82-85, 1982. [10]B.-U. Chen and A. C. Pastor, "Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3," Appl. Phys. Lett., vol. 30, no. 11, pp. 570-571, 1977. [11]P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, "Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation," Opt. Lett., vol. 13, no. 11, pp. 1050-1052, 1988. [12]F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, "Wet etching of proton-exchanged lithium niobate - a novel processing technique," J. Lightwave Technol., vol. 10, pp. 1060-1069, 1993. [13]K. Noguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, "Highly efficient 40GHz bandwidth Ti-LiNbO3 optical modulator employing ridge structure," IEEE Photon. Technol. Lett., vol. 5, pp. 52-54, 1993. [14]D. Marcuse, "Optimal electrode design for integrated optics modulators," IEEE J. Quantum Electron., vol. 18, no. 3, pp. 393-398, 1982. [15]C. M. Kim and R. V. Ramaswamy, "Overlap integral factors in integrated optic modulators and switches," J. Lightwave Technol., vol. 7, no. 7, pp. 1063-1070, 1989. [16]G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, ?GHz low half-wave voltage Ti:LiNbO3 intensity modulator," Electron. Lett., vol. 28, no. 9, pp. 826-827, 1992. [17]M. N. Armenise, "Fabrication techniques of lithium niobate waveguides," IEE Proc., vol. 135, no. 2, pp. 85-91, 1988. [18]R. V. Schmidt and I. P. Kaminow, "Metal diffused optical waveguides in LiNbO3," Appl., Phys., Lett., vol. 25, no. 8, pp. 458-460, 1974. [19]M. Minakata, S. Saito, M. Shibata, and S. Miyazawa, "Precise determination of refractive-index changes in Ti-diffused LiNbO3 optical waveguides," J. Appl. Phys., vol. 49, no. 9, pp. 4677-4682, 1978. [20]C. M. Kim and R. V. Ramaswamy, "Modeling of graded-index channel waveguides using nonuniform finite difference method," J. Lightwave Technol., vol. 7, no. 10, pp. 1581-1509, 1989. [21]W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, "Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate," J. Lightwave Technol., vol. 10, no. 9, pp. 1238-1246, 1992. [22]B. Herreros and G. Lifante, "LiNbO3 optical waveguides by Zn diffusion from vapor phase," Appl. Phys. Lett., vol. 66, no. 12, pp. 1449-1451, 1995. [23]F. Schiller, B. Herreros, and G. Lifante, "Optical characterization of vapor Zn-diffused waveguides in lithium niobate," J. Opt. Soc. Am. A, vol. 14, no. 2, pp. 425-429, 1997. [24]C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, "Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides," IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 872-875, 1992. [25]H. Haga, M. Izutsu, and T. Sueta, "LiNbO3 traveling-wave light modulator/switch with an etched groove," IEEE J. Quantum Electron., vol. 22, pp. 902-906, 1986. [26]K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, "A broadband Ti:LiNbO3 optical modulator with a ridge structure," J. Lightwave Technol., vol. 13, no. 6, pp. 1164-1168, 1995. [27]K. Kawano, "High-speed shielded velocity-matched Ti:LiNbO3 optical modulator," IEEE J. Quantum Electron., vol. 29, no. 9, pp. 2466-2475, 1993. [28]Y. Ohmachi and J. Noda, "Electro-optic light modulator with branched ridge waveguide," Appl. Phys. Lett., vol. 27, pp 544-546, 1975. [29]J. L. Jackel, R. E. Howard, E. L. Hu, and S. P. Lyman, "Reactive ion etching of LiNbO3," Appl. Phys. Lett., vol. 38, pp. 907-909, 1981. [30]W. L. Chen, R. S. Cheng, J. H. Lee, and W. S. Wang, "Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet-etching," IEEE Photon. Technol. Lett., vol. 7, pp. 1318-1320, 1995. [31]J. L. Jackel, C. E. Rice and J. J. Veselka, "Proton exchange for high-index waveguides in LiNbO3," Appl. Phys. Lett., vol. 41, no. 7, pp. 607-608, 1982. [32]K. Yamamoto and T. Taniuchi, "Characteristics of pyrophosphoric acid proton-exchanged waveguide in LiNbO3," J. Appl. Phys., vol. 70, no. 11, pp. 6663-6668, 1991. [33]K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol., vol. 3, no. 2, pp. 385-391, 1985. [34] W. C. Chang, S. J. Chang, C. Y. Sue, and C. L. Hsu, "Characteristic of proton-exchanged wet-etching on z-cut nickel-indiffused lithium niobate," Microwave and Optical Technol. Lett., vol. 18, no. 4, pp. 250-252, 1998. [35]A. Reisinger, "Characteristics of optical guided modes in lossy waveguides," Appl. Optics, vol. 12, no. 5, pp. 1015-1025, 1973. [36]M. Masuda and J. Koyama, "Effects of a buffer layer on TM modes in metal-clad optical waveguide using Ti-diffused LiNbO3 c-plate," Appl. Optics, vol. 16, no. 11, pp. 2994-3000, 1977. [37]S. J. Chang, C. L. Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, "Improved electro-optic modulator with ridge structure in x-cut LiNbO3," J. Lightwave Technol., vol. 17, no. 5, pp. 843-847, 1999. [38]W. E. Martin, "A new waveguide switch/modulator for integrated optics," Appl. Phys. Lett., vol. 26, no. 10, pp. 562-564, 1975. [39]D. H. Naghski, J. T. Boyd, H. E. Jacckson, S. Sriram, S. A. Kingsley, and J. Latess, "An integrated photonic Mach-Zehnder inteferometer with no electrodes for sensing electric fields," J. Lightwave Technol., vol. 12, no. 6, pp. 1092-1097, 1994.
|