(3.215.180.226) 您好!臺灣時間:2021/03/09 03:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅偉倫
研究生(外文):Lo, Wei-Lung
論文名稱:Inconel-718與其他材料磨削時使用不同切削液的現象分析
論文名稱(外文):The phenomenon of grinding Inconel-718,SKD-11 and S15C under cryogenic,wet and dry environment .
指導教授:廖運炫羅勝益羅勝益引用關係傅光華傅光華引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:60
中文關鍵詞:英高鎳低溫輪磨加工動態熱電偶溫度量測法摩擦係數
外文關鍵詞:Inconel-718cryogenic grindingdynamic thermocouple techniquecoefficient of friction
相關次數:
  • 被引用被引用:4
  • 點閱點閱:209
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本文的目的主要在比較乾磨削、溼磨削和液態氮冷卻三種加工條件,在不同切深之氧化鋁砂輪磨削Inconel-718、SKD-11和S15C的黏屑機制、磨削力、摩擦係數和磨削溫度。
實驗結果發現,黏屑可分為三種型態,Inconel-718噴液氮和乾磨削黏屑的型態與其他材料乾磨削生成的黏屑型態相同(Type1)。S15C噴液氮和三種材料的溼磨削生成的黏屑為另一種型態(Type2)。SKD-11噴液氮是第三種型態(Type3)。
Inconel-718的磨削力隨磨削道次上升,SKD-11和S15C的磨削力隨道次下降。Inconel-718和SKD-11的摩擦係數隨磨削道次下降,S15C隨道次上升。噴液氮能降低SKD-11和S15C的磨削溫度,卻不能降低Inconel-718的磨削溫度。在不同的切深下,Inconel-718產生Type3黏屑時,磨削力值跳動很大。從三種材料的實驗結果來看,液態氮冷卻法適合磨削較軟的材料,但不適合有加工硬化傾向的材料。

Abstract
Inconel-718 alloy is well known as one of a difficult-to-cut material. Grinding experiments by aluminum oxide wheel are conducted, and S15C, SKD-11 and Inconel-718 are grinded at different cutting depth and different cutting fluids(liquid nitrogen, water and no cutting fluid). Grinding force and grinding temperature are measured, and the topography of the grinding wheels are photographed. It is found that the loading of the wheels can be classified into three types. Chips of the first type are long and slender, and the chips do not adhere to abrasives. Effective cutting edges of the abrasives are not affected by the chips in the first type loading. Chips of the second type are small compare to the abrasives, adhering to the abrasive in the void between abrasives, and do not affect the effective cutting edges function. Chips of the third type adhering to the effective cutting edges render the edges ineffectiveness. The force rise with grinding passes when grinding Inconel-718 and SKD-11, descend with grinding pass when grinding S15C. The order of grinding force when using different cutting fluid varies in different cutting depth. It is because the phenomenon of cyclic fall out of the chips. It seems that materials prone to work-hardening is not suitable for cryogenic grinding.

第一章 緒論1
1-1研究動機1
1-2文獻回顧4
1-3本文目的6
1-4本文內容7
第二章 相關理論8
2-1Inconel-718的用途和冶金性質8
2-1-1Inconel-718的應用8
2-1-2Inconel-718超合金的冶金性質9
2-1-3Inconel-718的強化機構12
2-1-4Inconel-718的切削性13
2-2磨削時材料的去除機構14
第三章 實驗設備與細節16
3-1實驗設備16
3-2實驗細節19
3-2-1量測磨削溫度的方法19
3-2-2低溫環境的驗證21
3-2-3二種溫度量測方法的比較22
3-2-4本文主要實驗之加工條件24
第四章 實驗結果與討論25
4-1磨削後黏屑形態比較25
4-1-1SKD-11部分25
4-1-2Inconel-718部分:27
4-1-3S15C部分29
4-1-4綜合討論30
4-2磨削力、摩擦係數與磨削溫度對磨削道次的關係33
4-2-1Inconel-718部分33
4-2-2SKD-11部分37
4-2-3S15C部分40
4-3磨削深度對磨削力、磨擦係數、磨削溫度的影響42
4-3-1Inconel-718部分42
第五章 結論46
參考文獻48
附錄一
實驗結果表格50
附錄二
J-Type熱電偶對之溫度與電壓關係表51

[1] Smithberg, "Inconel 718 machining manual," Report no. 6M59-559, Manufacturing Research and Development, Boeing Commercial Airplane Company, 1987
[2] M. C. Shaw, and K. Nakayama, "Machining high strength materials," Annals of the CIRP, XV, 1967, pp.45-55
[3] J. M. Galimberti, "Improved metal removal rates for difficult-to-machine alloys," Creative Manufacturing Seminar, ASTME, 1962-3, pp.63-194
[4] "Machining the Huntington alloys," Technical Bulletin T-12, Huntington Alloy Product Division, The International Nickel Company, Inc., Huntington, West Virginia, 1985
[5] N. Zlatin, and J. Chrisstopher, "Machining Characteristic of Difficult to Machine Materials," ASM, 1975, pp.296-307
[6] S. Yossifon and C. Rubenstein, "The Grinding of Workpieces Exhibiting High Adhesion," J. eng. ind., Vol. 103, 1981, pp.144-155
[7] A. P. Nagaraj and A. K. Chattopadhyay, "On some aspects of wheel loading," Wear, Vol.135, 1989, pp.41-52
[8] P. Tso, "Study on the grinding of Inconel 718," J. of Material Processing Techonlogy, 55, 1995, pp.421-426
[9] I. Inasaki, H. K. Tonshoff and T. D. Howes, "Abrasive Machining in the Future," Annals of the CIRP , Vol. 42/2, 1993, pp.723-732
[10] S. Paul and A. B. Chattopadhyay, "Determination and Control of Grinding Zone Temperature under Cryogenic Cooling," Int. J. Mach. Tools Manufact., Vol. 36, No. 4, 1996, pp.491-501
[11] S. Paul and A. B. Chattopadhyay, "The effect of cryogenic cooling on grinding forces," Int. J. Mach. Tools Manufact., Vol. 36, No.1, 1995, pp.63-72
[12] R. W. Mceachron and E. Ratterman, "Diamond Processing of Structural Ceramics," Ceramics Engineering and Science Porceedings, Vol.7, No.7-8, 1986, pp.1063-1069
[13] J.V. Nicholas and D. R. White, Traceable Temperatures, John Wiley &Sons, 1994
[14] I. Inasaki, "Grinding process simulation based on the wheel topography measurement," Annals of the CIRP, Vol. 45/1, 1996, pp.347-350
[1] 賴耿陽譯著,精密加工新技術全集,復漢出版社,民國79年5月第2版
[2] 張燦輝, "工具機發展新趨勢-綠色工具機," 機械月刊, 1999年3月號

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔