(18.210.12.229) 您好!臺灣時間:2021/03/05 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何立偉
研究生(外文):Li-Wei Her
論文名稱:三軸慣性量測系統之研發
論文名稱(外文):Fabrication of a triaxial inertial measurement system
指導教授:周元昉
指導教授(外文):Yuan-Fang Chou
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:133
中文關鍵詞:量測微機電陽極結合微加速度計溫度補償電化學停止蝕刻法軌跡
外文關鍵詞:measurementMEMSanodic bondingmicroaccelerometertemperature compensationelectrochemical etch stop techniquetrajectory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  三軸慣性量測系統以六個微加速度計當感測元件,來量測待測物的運動六分量,利用三維運動學觀念並配合電腦來模擬待測物的運動軌跡。
本文涵蓋設計、分析、製造、訊號補償及訊號處理五大方面。首先,決定三軸慣性量測系統架構。然後,決定微加速度計黏貼於三角架的位置,利用現成的有限元素法軟體對三角架作模態分析並配合製作上的可行度,可得到較佳的幾何尺寸,以符合三角架的要求。
  在製造方面,以傳統加工法製造三軸慣性量測系統各元件,除微加速度計以微機電之微加工法製造,利用電化學停止蝕刻法,準確地蝕刻出所需支撐樑的厚度 。在質量塊與質量塊間的結合方面,以陽極結合法結合,其中陽極結合裝置為自行製作,且在本文中詳細闡述結合的檢測方法。
  在訊號補償方面,運用二極體的順向偏壓是溫度的函數關係,來做溫度補償電路,經由測試結果證明是可以作溫度補償,將訊號補償為實際值。
將訊號處理方面,將所量得待測物之運動六分量輸入電腦,利用電腦來模擬待測之運動軌跡。

A triaxial inertial measurement system is implemented using six microaccelerometers as the sensing elements. Rotational and translational acceleration data is acquired and numerically processed to obtain the trajectory of a body with motion in three dimensions.
This thesis covers the design, analysis, fabrication, signal compensation, and processing of the system. A basic structure for the measurement system is determined first. The dimension of the structure and the placement of the accelerometers is optimized with the help of a standard FEM package.
The accelerometers are fabricated with MEMS technology. All other mechanical system parts are traditionally machined. Electrochemical etch stop technique is used to precisely define the thickness of the beams holding the proof mass. The proof mass is created from two symmetrical parts. A proprietary anodic bonding apparatus has been designed for the purpose. Bond strength evaluation is examined in detail.
Temperature sensitivity of the accelerometer peizoresistors is compensated using diode circuitry. The forward bias voltages of diodes have been shown to be a function of temperature. Tests results are satisfactory.
The accelerometer data is fed into a computer, which calculates the trajectory of the moving body.

符號說明ⅤⅡ
表目錄Ⅹ
圖目錄ⅩⅡ
第一章 緒論1
1.1 前言1
1.2 文獻回顧1
1.3 動機5
1.4 本文內容6
第二章 三軸慣性量測系統之設計8
2.1 系統架構8
2.1.1 量測單元8
2.1.2 訊號處理單元11
2.2 三角架之固有頻率11
2.3 感測原理12
2.3.1 半導體應變規12
2.3.2 惠司同電橋15
2.3.3 感測流程16
2.4 訊號處理17
第三章 壓阻式微型加速度計之製造19
3.1 製程設計19
3.1.1 製造上問題之解決22
3.2 薄樑之厚度控制24
3.2.1 電化學停止蝕刻原理24
3.2.1-1 蝕刻單p型或n型矽晶圓24
3.2.1-2 蝕刻截止在n型磊晶層之電位25
3.2.2 電化學停止蝕刻設備26
3.3 底座、氮化矽層及樑與質量塊表面蝕刻26
3.3.1 底座蝕刻27
3.3.2 氮化矽層蝕刻28
3.3.3 樑與質量塊表面蝕刻30
3.4 質量塊和質量塊間的結合30
3.4.1 透過接著層的結合31
3.4.2 不透過接著層的結合32
3.4.3 陽極結合裝置之製作34
3.4.4 質量塊與質量塊間的結合36
3.4.5 檢測方法36
3.5 鋁薄膜、金薄膜和二氧化矽薄膜沉積38
3.5.1 薄膜製作38
3.5.2 薄膜厚度量測40
3.6 Wheastone電橋電阻之求法41
第四章 訊號處理43
4.1 待測物之運動軌跡43
4.1.1 待測物各軸之角加速度求法43
4.1.2 待測物之位置與姿態之求法43
4.2 數位訊號處理46
4.2.1 濾波器的性能規格46
4.3 範例47
4.3.1 範例一47
4.3.1 範例二48
第五章 實驗結果與討論49
5.1 校驗微加速度計49
5.2 模擬待測體運動軌跡50
第六章 結論與建議51
參考文獻53
附表57
附圖73
附錄A 陽極接合裝置之操作步驟126
附錄A-1 晶圓和玻璃間的結合126
附錄A-2 晶圓和晶圓間的結合127
附錄B 模擬待測物之運動軌跡程式129
附錄C 質量塊之角落補償133

[1] Soderkvist, "Micromachined gyroscopes", Sensors and Actuators A,
Vol.43, pp.65-71, 1994
[2] Jeng-Heng Chen, Siu-Chen Lee, Debra, D.B. "Gyroscope Free
Strapdown Inertial Measurement Unit by Six Linear
Accelerometers", AIAA Journal of Guidance Control and Dynamics,
Vol.17, No.2, March-April. 1994
[3] 童若峻, 壓阻式微型加速度計之設計與製造, 國立台灣大學機械
工程研究所碩士論文, 民國84年
[4] A.R.SCHULER, "Measuring Rotational Motion with Linear Accelerometer", IEEE Transactions on Aerospace and Electronic Systems, Vol.AES-3,pp.465-471,1967
[5] A.J. Padgaonkar, K.W. Krieger, A. I. King, "Measurement of
Angular Acceleration of a Rigid Using Linear Accelerometers",
Journal of Applied Mechanics, Transaction of the American Society
of Mechanical Engineers, Vol.42, Sept. 1975, pp.552-556
[6] O. Ernest Doebelin, Measurement Systems: Application and
Design, McGraw-Hill, New York, 1990
[7] S.M. Sze, Semiconductor Sensors, John Wiley & Sons, Chapter
4,1994
[8] Harry N. Norton, Handbook of Transducers, Prentice-Hall, 1989
[9] G. Dearnaley, Ion implantation, North-Holland Pub. Co., New
York, 1973
[10] Y. Kanda, "A Graphical Representation of The Piezoresistance
Coefficient in Silicon", IEEE Transaction on Electron Devices, Vol. ED-29,
No.1, January, pp.64-70, 1982
[11] M. Akbar, M. A. Shanblatt, "Temperature compensation of
piezoresistive pressure sensors", Sensor and Actuators A, Vol.33,
pp.155-162, 1992
[12] H. Crazzolara, W. V. Munch, M. Nagele, "Silicon pressure sensor
with integrator bias stabilization and temperature compenation",
Sensor and Actuators A, Vol.30, pp.241-247, 1992
[13] B.S.T.J. Brief, "Electrochemically Controlled Thinning of Silicon",
The Bell System Technical Journal, pp.473-475, MARCH 1970
[14] R. L. Gealer, H. K. Karten, and S. M. Ward, "The effect of an
Interfacial P-N Junction on the Electrochemical Passivation of
Silicon in Aqueous Ethylenediamine-Pyrocatechol", Journal of
the Eelectrochemical society, VOL.135, NO.5, pp.1180-1183, 1988
[15] U. Schnakenberg, W. Benecke, P. Lange, "TMAHW Etchants for
Silicon Micromachining", Tech. Digest, 6th Int. Conf. Solid-State
Sensor and Actuators(Transducers'91),San Francisco, CA, USA,
24-28 June, 1991, pp.815-818
[16] A. Merlos, M. Acero, M. H. Bao, J. Bausells and J. Esteve,
"THAH/IPA anisotropic etching characteristics", Sensor and
Actuators A, Vol.37-38, pp.737-743, 1993
[17] B. Kloeck, S. D. Collins, N. F. D. Rooij, R. L. Smith, "Study of
Electrochemical Etch-Stop for High-Precision Thickness Control of
Silicon Membranes", IEEE Transactions on Electron Devides,
VOL.36, NO.4, pp.663-669, APRIL 1989
[18] K. R. Williams, "Etch Rates for Micromaching Processing",
Journal of Microelectromechanical Systems, VOL.5, NO.1, pp.256-
269, DECEMBER 1996
[19] G. Wallis, D. I. Pomerantz , "Field assisted glass-metal sealing",
Journal of Applied Physics., Vol.40, pp.3946-3949
[20] A. Brooks and R. P. Donovan, "Low-temperature electrostatic
silicon-to-silicon seals using sputtered borosilicate glass", Journal
of Electrochemical Society., Vol.119, pp.545-546
[21] T. R. Anthony, "The isolation of silicon by anodic bonding",
Journal of Applied Physics, Vol.58, No.3, pp.1240-1247, 1985
[22] M. Rsashi, A. Nakano, S. Shoji and H. Hebiguchi, "Low-temperature
Silicon-to-silicon Anodic Bonding with Intermediate Low Melting
Point Glass", Sensor and Actuators A, Vol.21, pp.931-934, 1990
[23] A. Hanneborg, M. Nese, P. Ohlckers, " Silicon-to-silicon anodic
bonding with a borosilicate glass layer", Journal of Micromechanical
Microengineering.,Vol.1, pp.139-144, 1991
[24] H. Henmi, S. Shoji, Y. Shoji, K. Yoshimi and M. Esashi, "Vacuun
packaging for microsensors by glass-silicon anodic bonding",
Sensor and Actuators A, Vol.43, pp.243-248, 1994
[25] M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, "Silicon-to-
Silicon direct bonding method", Journal of Applied Physics, Vol.60,
No.8, pp.2987-2989, 1986
[26] K. Petersen, J. Brown, T. Vermeulen, P. Barth, J. Mallon, J. Bryzek,
"Ultrs-stable, High-temperature Pressure Sensor Using Silicon
Fusion Bonding", Sensor and Actuators A, Vol.21, pp.96-101, 1990
[27] R. F. Wolffenbuttel, "Low-temperature Silicon Wafer-Wafer Bonding
using Gold at Eutectic Temperature", Sensor and Actuators
A,Vol.43, pp.223-229,1994
[28] E. William , Spaceflight Dynamics, McGraw-Hill, 1989
[29] P. C. Hughes, Spacecraft Attitude Dynamics, New York, 1986
[30] F. J. Taylor, Filter Design Handbook, New York, 1983

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔