(3.220.231.235) 您好!臺灣時間:2021/03/07 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃兆銘
研究生(外文):Chao-Ming Huang
論文名稱:斥力型磁浮懸吊導引系統之非線性控制器設計
論文名稱(外文):Nonlinear Controller Design of Repulsive Maglev Suspension Guiding System
指導教授:顏家鈺顏家鈺引用關係
指導教授(外文):Jia-Yush Yen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:210
中文關鍵詞:非線性控制磁浮系統導軌近似輸入輸出迴授線性化歸步法適應滑動模式控制斥力型磁浮性統
外文關鍵詞:Nonlinear ControlMaglev SystemGuidewayApproximate Input-Output Feedback LinearizationBacksteppingAdaptive Sliding Mode ControlRepulsive Maglev System
相關次數:
  • 被引用被引用:8
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
以目前精密定位的技術來說,雙驅動器的架構似乎式現階段最熱門的方式。雙驅動器的架構通常是以具有柔韌性的驅動元件來達到精密定位的目的,並以導螺桿機構來含蓋整體運動的行程。這類雙驅動器的架構在最近幾年主導了機密定位設備的市場,然而這些雙驅動器的架構確仍有許多問題存在,例如負責微調的壓電元件會有震盪的發生、粗微調因量測解析度不同所造成的非線性現象,此外導螺桿機構的潤滑問題等也都必須經過特殊的處理。為了避免這些現象或摩擦與背隙的問題,非接觸式的導軌元件似乎是唯一的選擇。常見的非接觸式的導軌元件有氣潤式、靜電式與磁浮式等三大類。在本論文中將設計一斥力型磁浮懸吊導引系統來達到上述的目標。但由於磁浮系統先天具有不穩定的動態,因此閉迴路控制器的應用便成了不可或缺的要素。
在本論文中希望藉由非線性控制器的設計來達到穩定斥力型磁浮懸吊導引系統並同時提高系統剛性的目標。本論文分別以Jacobian線性化技術、輸入輸出迴授線性化的技術與近似輸入輸出迴授線性化搭配歸步法的技術來作為非線性控制器的基本架構,並配合強健性極佳的適應滑動模式控制理論,來完成非線性控制器。藉由這三種控制架構在理論上、模擬上與實驗上的比較,驗證了本論文所設計以近似輸入輸出迴授線性化與歸步法為基礎的適應滑動模式控制器,不論是在暫態響應上或閉迴路頻率響應上都有最佳的表現。藉由近似輸入輸出迴授線性化,一方面可以保有非線性系統在系統模式的精確度,另一方面,又可在近似輸入輸出迴授線性化後所產生的多項式模式中找尋出有益於系統穩定性的動態,並搭配所謂的避免消除,則可以改善系統的響應。除了從理論與模擬的角度來驗證的本論文所設計的控制理論法,本論文亦實際應用在斥力型磁浮懸吊導引系統上,從暫態響應與閉迴路頻率響應的實驗結果皆可以驗證本論文所設計的控制器具有最快的穩定速度與閉迴路頻寬、剛性,更提升了斥力型磁浮懸吊導引系統在導軌元件剛性競爭上的籌碼。
The most popular approach to achieve ultra-high precision positioning is to use compound actuators. The compound actuators generally include flexure type actuators to achieve very fine positioning resolution, and ball-screws to cover the large travels. These compound actuator configurations have dominated the equipment market in recent years; however, these configurations are still associated with some problems. First of all, the flexure mechanisms driven by piezo-electric actuators are usually highly oscillatory. Secondly, the different actuator resolutions make the system behavior highly non-linear. It is also well known that the lubrication for the ball-screws requires special treatment. The alternate approaches to avoid friction and backlash is to adopt a non-contact bearing mechanisms. These include air-lubricated levitation, electrostatic levitation, and magnetic levitation (maglev). In this thesis, a Repulsive Maglev Suspension Guiding System (RMSGS) is designed for this purpose. But according to the unstable nature of maglev system, a closed-loop controller is necessary.
In this thesis, we want to stabilize the RMSGS and improve the system stiffness by designing a nonlinear controller. Based on three nonlinear control frameworks, Jacobian Linearization, Input-Output Feedback Linearization and Approximate Input-Output Feedback Linearization, we combine the Adaptive Sliding Mode Control individually to improve the robustness of closed-loop system. Real experimental tests, simulations, and theoretical analyses all prove that the Adaptive Sliding Mode Control based on Approximate Input-Output Feedback Linearization and Backstepping has the best result, not only in transient response but also closed-loop frequency response.
First, we transform the nonlinear model of system to polynomial model by means of Approximate Input-Output Feedback Linearization, and then we can find some dynamics from the polynomial model, which are helpful to system stability. By applying Avoid Cancellation to these helpful dynamics, the improvement of system bandwidth, stiffness and settling time could be obtained.
封面
目錄
誌謝
中文摘要
英文摘要
目錄
圖表目錄
第一章 緒論
1-1 斥力型磁浮懸吊導引系統的設計動機
1-1-1 從精密定位系統的觀點
1-1-2 從導軌元件的觀點
1-1-3 從非接觸式導軌的觀點
1-2 控制理論建立的動機
1-3 文獻回顧
1-4 論文貢獻
1-5 本文內容
第二章 磁浮技術概論
2-1 基礎磁學
2-1-1 畢歐沙伐定律
2-1-2 真空中的磁場
2-1-3 勞倫茲力
2-2 磁浮技術之不穩定特性
2-3 磁浮技術綜覽
2-3-1 吸力型電磁鐵式磁浮系統
2-3-2 併用永久磁鐵之吸力型電磁鐵式磁浮系統
2-3-3 永久磁鐵斥力型磁浮系統
2-3-4 斥力型電感應式磁浮系統
2-3-5 斥力型電磁式磁浮技術
2-3-6 其他磁浮技術
2-4 永久磁鐵簡介
2-4-1 磁化曲線
2-4-2 磁性材料
2-4-3 磁學名稱,符號,單位整理
2-4-4 永久磁鐵的特性分析
2-4-5 常見之永久磁鐵
第三章 系統設計與分析
3-1 引言
3-2 磁浮導軌設計基礎
3-2-1 矩形線圈
3-2-2 穩形電磁鐵
3-2-3 併用永久磁鐵
3-3 四導軌設計
3-4 磁浮平台設計
3-5 整體設計與力學分析
3-5-1 力學分析程式
3-5-2 主動致浮裝置設計
3-5-3 穩定裝置設計
3-5-4 設計參數總整理
3-6 併用永久磁鐵之斥力型磁浮懸吊導引系統之設計圖
第四章 實驗裝置與控制器設計對策
4-1 引言
4-2 量測系統規劃
4-2-1 電感式位移感測器
4-2-2 量測系統的規劃
4-2-3 量測系統的工作原理
4-3 驅動系統規劃
4-4 實驗設備
4-5 控制器設計對策
第五章 系統模式建立
5-1 引言
5-2 整體系統模型建立
5-2-1 作用力與力矩分析
5-2-2 磁浮平台動態方程式建立
5-3 系統模型穩定性分析
5-4 不穩定模式之系統模型建立
5-5 系統不確定性分析
第六章 不穩定子系統之控制器設計與實驗結果分析
6-1 引言
6-2 以JACOBIAN線性化為基礎之適應滑動模式控制器設計
6-2-1 控制器設計
6-2-2 實驗結果與分析
6-3 以輸入輸出迴授線性化為基礎之適應滑動模式控制器設計
6-3-1 控制器設計
6-3-2 實驗結果與分析
6-4 JACOBIAN線性化與輸入輸出迴授線性化之分析
6-5 以近似輸入輸出迴授線性化與歸步法為基礎之適應滑動模式控制器設計
6-5-1 系統多項式模式之建立
6-5-2 控制器設計
6-5-3 實驗結果與分析
6-6 結論
第七章 整體系統之控制器設計與實驗結果分析
7-1 引言
7-2 近似線性化
7-3 控制器設計
7-4 實驗結果與分析
第八章 結論與建議
8-1 對於斥力型磁浮懸吊導引系統結論與建議
8-2 對於控制理論的結論與建議
8-3 未來展望
參考文獻
1. Yen, J. Y. and Tsai, K. Y., "Position and Orientation Control of a Nano-Precision Stepper Fine-stage," Submitted to IEEE/ASME Trans. on Mechatronics.
2. 半導體製程設備步進器定位機構研發-子計劃一:步進器定位機構設計與製作。計畫編號:NSC-85-2213-E-002-012.
3. I. Y. Wang, "A Magnetic Levitation Silicon Wafer Transport System", Ph.D. Thesis, The University of Texas at Austin, 1993.
4. Wu, K. N. and L. C. Fu, "An Adaptive Control of a Four-Track Maglev System", Journal of Control Systems and Technology, vol.4, no.4, pp.295-302, 1996.
5. Wu, K-N, "Integrated Design and Control of a Magnetically Levitated Guiding System", Master''s Thesis, National Taiwan University, 1997.
6. Miroslav Krsti?, Ioannis Kanellakopoulos, Peter Kokotovi?, "Nonlinear and Adaptive Control Design", Wiley-Interscience, 1995.
7. Alberto Isidori, "Nonlinear Control System", Springer-Verlag, 1985.
8. Michael A. Henson and Dale E. Seborg, "Nonlinear Process Control", Prentice-Hall International, Inc., 1997.
9. Hassan K. Khalil, "Nonlinear Systems", Prentice-Hall International, Inc., 1996.
10. Jean-Jacques E. Slotine, "Applied Nonlinear Control", Prentice-Hall International, Inc., 1991.
11. Mrdjan Jankovic, "Adaptive Output Feedback Control of Non-linear Feedback Linearizable Systems", International Journal of Adaptive Control and Signal Processing, vol. 10, pp. 1-18, 1996.
12. R. Rothfuss, J. Rudolph, and M. Zeitz, "Flatness Based Control of a Nonlinear Chemical Reactor Model", Automatica, vol. 32, no. 10, pp. 1433-1439, 1996.
13. Chi-Cheng Cheng and Cheng-Yi Chen, "Controller Design for an Overhead Crane System with Uncertainty", Control Eng. Practice, vol. 4, no. 5, pp. 645-653, 1996.
14. Mrdjan Jankovic, "Adaptive Nonlinear Output Feedback Tracking with a Partial High Gain Observer and Backstepping", IEEE Transactions on Automatic Control, vol. 42, no. 1, pp. 106-113, 1997.
15. Le Yi Wang, Imad Makki and Wei Zhan, " A Note on Robust Stabilization of Feedback Linearizable Systems", International Journal of Robust and Nonlinear Control, vol. 7, pp. 85-95, 1997.
16. Ricardo H. Dunia, Thomas F. Edgar and Benito Fernandez, "Effect of Process Uncertainties on Generic Model Control: a Geometric Approach", Chemical Engineering Science, vol. 52, no. 14, pp. 2205-2222, 1997.
17. Bader Aloliwi and Hassan K. Khalil, " Adaptive Output Feedback Regulation of a Class of Nonlinear Systems: Convergence and Robustness", IEEE Transactions on Automatic Control, vol. 42, no. 12, pp. 1714-1716, 1997.
18. Jo and H. Nam, "Asymptotic Output Tracking of Fully Input-Output Linearizable Systems via Output Feedback", Proceedings of the American Control Conference 3, pp. 2170-2174, 1997.
19. Soroush and Masoud, "Input-Output Linearizing Nonlinear Model Predictive Control", International Journal of Control, vol. 68, no. 6, pp. 1449-1473, 1997.
20. Jae H. Chung, Steven A. Velinsky and Ronald A. Hess, "Motion Control of a Mobile Manipulator by Input-Output Linearization", ASME Dynamic Systems and Control Division, vol. 61, pp. 481-485, 1997.
21. Riccardo Marino and Patrizio Tomei, "Robust Adaptive State-Feedback Tracking for Nonlinear System", IEEE Transactions on Automatic Control, vol. 43, no. 1, pp. 84-89, 1998.
22. J. C. Chiou, "Constraint Violation Stabilization Using Input-Output Feedback Linearzation in Multibody Dynamic Analysis", Journal of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 222-228, 1998.
23. Alonso and A. Antonio, "Design of a Class of Stabilizing Nonlinear State Feedback Controllers with Bounded Inputs", Industrial & Engineering Chemistry Research, vol. 37, no. 1, pp. 131-144, 1998.
24. Dainson and E. Boris, "Robust Nonlinear Control of Chemical Reactors", AICHE Journal, vol. 44, no. 4, pp. 993-998, 1998.
25.SungJun Joo and Jin H. Seo, "Design and Analysis of the Nonlinear Feedback Linearization Control for an Electromagnetic Suspension System", IEEE Transactions on Control System Technology, vol. 5, no. 1, pp. 135-144, 1997.
26. Sira-Ramirez and Hebertt, "Adaptive Dynamical Input-Output Linearization of DC to DC Power Converters: a Backstepping Approach", International Journal of Robust and Nonlinear Control, vol. 7, no. 3, pp. 279-296, 1997.
27. Lih-Chang Lin and Tzyh-Biau Gau, "Feedback Linearization and Fuzzy Control for Conical Magnetic Bearings", IEEE Transactions on Control System Technology, vol. 5, no. 4, pp. 417-426, 1997.
28. Kurtz and J. Michael, "Input-Output Linearization Control of Constrained Nonlinear Processes", Journal of Process Control, vol. 7, no. 1, pp. 3-17, 1997.
29. Femat and Ricardo, "Robust Regulation of Temperature in a Fluidized Bed Reactor via Uncertainty Estimation", IEEE Conference on Control Application, pp. 457-459, 1997.
30. M. French and E. Rogers, "Approximate Models for Adaptive Feedback Linearization", INT. J. Control, vol. 68 No. 6, pp. 1305-1321, 1997.
31. Thomas A. Kendi and Francis J. Doyle III, "Nonlinear Control of a Fluidized Bed Reactor Using Approximate Feedback Linearization", Ind. Eng. Chem. Res., vol. 35, pp. 746-757, 1996.
32. Reza Ghanadan and G. L. Blankenship, "Adaptive Control of Nonlinear Systems via Approximate Linearization", IEEE Transactions on Automatic Control, vol. 41, no. 4, pp. 618-625, 1996.
33. Banaszuk and Andrzej, "Approximate Feedback Linearization: a Homotopy Operator Approach", SIAM Journal on Control and Optimization, vol. 34, no. 5, pp. 1533-1554, 1996.
34. Savaresi and M. Sergio, "Approximate Feedback Linearization of Nonlinear Systems: A Data-based Direct Design Approach", Proceedings of the IEEE Conference on Decision and Control 1, pp. 18-23, 1997.
35. Hauser and John, "Approximate Feedback Linearization Around a Trajectory: Application to Trajectory Planning", Proceedings of the IEEE Conference on Decision and Control 1, pp. 7-11, 1997.
36. M. French and E. Rogers, "Approximate Parameterizations for Adaptive Feedback Linearization", Proceedings of the IEEE Conference on Decision and Control 5, pp. 4665-4670, 1997.
37. Scott A. Bortoff, "Approximate State-Feedback Linearization Using Spline Functions", Automatica, vol. 33, no. 8, pp. 1449-1458, 1997.
38. Read, Nolan K., Ray, W. Harmon, "Application of Nonlinear Dynamic Analysis to the Identification and Control of Nonlinear Systems - I. Simple Dynamics", Journal of Process Control, vol. 8, no. 1, pp. 1-15, 1998.
39. Read, Nolan K., Ray, W. Harmon, "Application of Nonlinear Dynamic Analysis to the Identification and Control of Nonlinear Systems - II. More Complex Dynamics", Journal of Process Control, vol. 8, no. 1, pp. 17-34, 1998.
40. Read, Nolan K., Ray, W. Harmon, "Application of Nonlinear Dynamic Analysis to the Identification and Control of Nonlinear Systems - III. n-Dimensional Systems", Journal of Process Control, vol. 8, no. 1, pp. 35-46, 1998.
41. Song, H. W., Wang, W. L., "Non-linear System Identification Using Frequency Domain Measurement Data", Proceedings of the International Modal Analysis Conference - IMAC 1, pp. 746-752, 1998.
42. Anders Robertsson and Rolf Johansson, "Comments on "Nonlinear Output Feedback Control of Dynamically Positioned Ships Using Vectorial Observer Backstepping"", IEEE Transactions on Control System Technology, vol. 6, no. 3, pp. 439-441, 1998.
43. Kwanghee Nam, "An Approximate Nonlinear Observer with Polynomial Coordinate Transformation Maps", IEEE Transactions on Automatic Control, vol. 42, no. 4, pp. 522-527, 1997.
44. P. K. Sinha., "Electromagnetic Suspension: Dynamics and Control", Peter Peregrinus, London, 1987.
45. P. Lorrian and D. R. Corson, "Electromagnetism, Principles and Application", W. H. Freeman and Company, San Francisco, 1979.
46. E. M. Purcell, "Electricity and Magnetism", Berkeley Physics Course vol 2, McGraw-Hill, 1965.
47. J. G. David, "Introduction to Electrodynamics", Prentice-Hall Inc. Englewood Cliffs, New Jersey, 1981.
48. 黃忠良, "磁懸浮與磁力軸承", 復漢出版社, 1994.
49. 王以真, "實用磁路設計", 全華科技圖書股份有限公司, 1995.
50. 白中和, "電磁學原理與應用", 建興出版社, 1995.
51. 王怡鈞, "電磁學", 超級科技圖書股份有限公司, 1994.
52. 陳錫桓, "電磁學", 中央圖書出版社, 1986.
53. Akio, Seki, "Dynamics of the Bogie of a Maglev System with Guideway Irregularities", IEEE Transactions on Magnetics, vol. 32, no. 5, pp. 5043-5045, 1996.
54. Kurz, Stefan, "Threedimensional Transient BEM-FEM Coupled Analysis of Electrodynamic Levitation Problems", IEEE Transactions on Magnetics, vol. 32, no. 1, pp. 1062-1065, 1996.
55. S. V. Burylov, "Levitation Characteristics of a Combined Zero-flux System of Electrodynamic Suspension", Izvestiya AN SSSR: Energetikai Transport, no. 2, pp. 76-82, 1994.
56. Leung, Eddie, "Study of two Distinct Coil Designs for a Maglev EDS Application", IEEE Transactions on Magnetics, vol. 30, no. 4, pp. 2379-2382, 1994.
57. Burkhardt, E.E., "Analysis of Superconducting Magnet (SCM)-Ground Coil Interactions for EDS Maglev Coil Configurations", IEEE Transactions on Applied Superconductivity, vol. 3, no. 1, pp. 430-433, 1993.
58. He, J.L., "Double-row Loop-coil Configuration for EDS Maglev Suspension, Guidance, and Electromagnetic Guideway Directional Switching", IEEE Transactions on Magnetics, vol. 29, no. 6, pp. 2956-2958, 1993.
59. Mulcahy, Thomas M., "Forces on a Magnet Moving Past Figure-eight Coils", IEEE Transactions on Magnetics, vol. 29, no. 6, pp. 2947-2949, 1993.
60. Hill, R. John, "Teaching electrodynamic levitation theory", IEEE Transactions on Education, vol. 33, no. 4, pp. 346-354, 1990.
61. S. Russenschuck, "Integrated design of Superconducting Accelerator Magnets. A Case Study of the Main Quadrupole", EPJ Applied Physics, vol. 1, no. 1, pp. 93-102, 1998.
62. V. Jung, "Local Texture and Magnetic Levitation Force of YBaCuO Cylinders", Materials Science Forum, pp. 273-275, 1998.
63. Rossman, Budnick, I. Joseph, "Precession of Spinning Magnets Levitated over High-temperature Superconductors", Physica C: Superconductivity, vol. 295, 3-4, pp. 304-329, 1998.
64. Nakashima, "Present Status of Progress in Maglev Development", Japanese Railway Engineering, vol. 139, pp. 6, 1998.
65. Yamashita, "Echnological Development of Superconducting Magnetically Levitated Railway", Japanese Railway Engineering 139, pp. 1, 1998.
66. Vajda, Istvan, "Advanced Hysteresis Model for Levitating Applications of HTSC Materials", IEEE Transactions on Applied Superconductivity, vol. 7, no. 2, pp. 916-919, 1997.
67. Stephen J. Ludwick, David L. Trumper, Michael L. Holmes, "Modeling and Control of a Six Degree-of-Freedom Magnetic/Fluid Motion Control Stage", IEEE Transactions on Control System Technology, vol. 4, no. 5, pp. 553-564, 1996.
68. "AS Series Inductive Displacement Sensors Instruction Maunal", Keyence Corporation, 1993.
69. "DAQ-STC Technical Reference Manual, System Timing Controller for Data Acquisition", Nation Instruments Corporation, 1995.
70. "AT-MIO E Series Register-Level Programmer Manual", Nation Instruments Corporation, 1995.
71. "AT-MIO/AI E Series User Manual", Nation Instruments Corporation, 1996.
72. "AT-AO-6/10 User Manual", Nation Instruments Corporation, 1994.
73. "LabWindows Standard Libraries Reference Manual Version 2.3", Nation Instruments Corporation, 1994.
74. "LabWindows User Manual Version 2.3", Nation Instruments Corporation, 1994.
75. "LabWindows Instrument Library Developer''s Guide Version 2.3", Nation Instruments Corporation, 1994.
76. "LabWindows Advanced Analysis Library Reference Manual Version 2.3", Nation Instruments Corporation, 1994.
77. "LabWindows User Interface Library Reference Manual Version 2.3", Nation Instruments Corporation, 1994.
78. Jerry H. Ginsberg, "Advanced Engineering Dynamics", Harper & Row, Publishers, Inc., 1988.
79. Edward J. Haug, "Intermediate Dynamics", Englewood Cliffs, N. J., Prentice Hall, 1992.
80. Ioan Dore Landau, "System Identification and Control Design", Prentice-Hall International, Inc., 1988.
81. Brian D. O. Anderson and John B. Moore, "Optimal Control, Linear Quadratic Methods", Prentice-Hall International, Inc., 1989.
82. J. P. Barbot, S. Monaco and D. Normand-Cyrot, "Quadratic Forms and Approximate Feedback Linearization in Discrete Time", Int. J. Cotnrol, vol. 67, no. 4, pp. 567-586, 1997.
83. "Optimization Toolbox User''s Guide", MathWorks, Inc., 1997.
84. K. Schittowski, "NLQPL: A Fortran-Subroutine Solving Constrained Nonlinear Programming Problems", Annals of Operations Research, vol. 5, pp. 485-500, 1985.
85. M. C. Biggs, "Constrained Minimization Using Recursive Quadratic Programming", Towards Global Optimization, North-Holland, pp.341-349, 1975.
86. S. P. Han, "A Globally Convergent Method for Nonlinear Programming", J. Optimization Theory and Applications, vol. 22, p. 297, 1977.
87. M. J. D. Powell, " A Fast Algorithm for Nonlinearly Constrained Optimization Calculations", Numerical Analysis, G. A. Watson ed., Lecture Notes in Mathematics, Springer Verlag, vol. 630, 1978.
88. M. J. D. Powell, "The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations", Nonlinear Programming 3, Academic Press, 1978.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔