跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏凱翔
研究生(外文):Kaihsiang Yen
論文名稱:微機械微波開關之研究
論文名稱(外文):STUDY ON MICROMACHINED MICROWAVE SWITCHES
指導教授:張培仁
指導教授(外文):Peizen Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:72
中文關鍵詞:微機電系統微波開關共面波導平行四邊形致動器乾蝕刻
外文關鍵詞:MEMSmicrowave switchCPWparallelogram actuatorRIE
相關次數:
  • 被引用被引用:2
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文所設計及製作之微機械微波開關分別製作於砷化鎵晶片及矽晶片上,因為製程中只需一道光罩,故大幅降低實驗中的難度以提高成功率;此外另一微波開關之設計完全依循專業晶圓代工廠之CMOS設計要求,其後製程只需進行無蝕刻擋罩之乾蝕刻即可完成。驅動此微波開關所需之靜電壓也不大,約18伏特即可開始動作。
此微機械微波開關是由兩個靜電式平行四邊形致動器、一個共面波導及兩個T型夾子所組成。先以金屬定義出微波開關之形狀,最後藉由對砷化鎵或矽基材的乾蝕刻,可使微結構體懸浮於基材上而具有活動性。
當未施加電壓於致動器時,此致動器便不推動T型夾子,使微波訊號在共面波導中傳遞不受影響,如同一般導通時的狀況;相反的,如施加電壓於致動器時,致動器將推動T型夾子往共面波導的方向移動,使微波訊號受到T型夾子的干擾而造成不導通的情形。
此外,論文中提出一個和CMOS標準製程完全相容的微波開關,此微波開關能和RF電路整合在單一晶片上,相信在未來的無線通訊上有很大的潛力。
This work fabricates micromachined microwave switches on GaAs and Si substrates. The difficulties of process are decreased by only needing one mask. Another microwave switch uses the conventional CMOS process. This switch is fully compatible with an IC foundry service, and the post-process is completed with maskless dry etching. In addition, the switches only require a low dc voltage of around 18 V for electrostatic traction.
The micromachined microwave switches consist of two electrostatic parallelogram actuators, two T-type grippers and one coplanar waveguide on GaAs or Si substrate. I use metal to pattern the shapes of microwave switches. The microstructures are suspended over GaAs or Si substrate by dry etching the substrates.
Without an applied voltage, the actuators do not affect the CPW, accounting for why T-type grippers of actuators do not couple to microwave propagation. With an applied voltage, dc voltage is applied to the actuators to make T-type grippers contact with the signal line of CPW. The capacitance coupling becomes significantly larger than the first one to intercept microwave propagation.
In addition, this work provides a novel conceptual microwave switch with a fully compatible CMOS process on silicon substrate. The switch proposed herein has a monolithic integration capability with RF circuits and is highly promising for future applications in communications.
目 錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖表列 vii
第一章 緒論 1
1.1 前言1
1.2 研究動機 2
1.3 文獻回顧 4
1.4 研究方法 6
1.5 章節提要 8
第二章 設計原理 9
2.1 微波開關操作原理 9
2.2 靜電式平行四邊形致動器操作原理 11
2.3 GaAs微波開關之結構設計 14
2.4 Si微波開關之結構設計 15
2.5 CMOS微波開關之結構設計 16
第三章 微波開關製程 19
3.1 GaAs微波開關製程 19
3.1.1 製作流程 19
3.1.2 光罩製作 21
3.1.3 微影 23
3.1.4 蒸鍍及掀舉金屬 24
3.1.5 非等向性蝕刻砷化鎵 25
3.1.6 蒸鍍及非等向性蝕刻鋁 26
3.1.7 成長及非等向性蝕刻二氧化矽 26
3.1.8 等向性蝕刻砷化鎵 27
3.2 Si微波開關製程 29
3.2.1 製作流程 29
3.2.2 光罩製作 31
3.2.3 成長二氧化矽及氮化矽 33
3.2.4 微影 33
3.2.5 蒸鍍及掀舉金屬 34
3.2.6 非等向性蝕刻二氧化矽及氮化矽 34
3.2.7 非等向性蝕刻矽 35
3.2.8 蒸鍍及非等向性蝕刻鋁 37
3.2.9 成長及非等向性蝕刻二氧化矽 37
3.2.10 等向性蝕刻矽 38
3.3 CMOS微波開關製程 40
3.3.1 製作流程 40
3.3.2 非等向性蝕刻二氧化矽 42
3.3.3 非等向性蝕刻矽基材 43
3.3.4 成長及非等向性蝕刻二氧化矽 45
3.3.5 等向性蝕刻矽基材 46
3.4 乾蝕刻 48
3.4.1 非等向性蝕刻矽 48
3.4.2 等向性蝕刻矽 51
3.4.3 蝕刻深度尺 55
第四章 微波開關量測 59
4.1 微波開關性能量測 59
4.2 S-parameter量測結果 60
4.3 操作電壓量測結果 62
第五章 結論 63
5.1 實驗結果討論 63
5.2 成果與未來展望 65
參考文獻 67
圖 表 列
表(1)SF6蝕刻silicon的參數及結果51
圖(1-1)夾子未動作下訊號導通6
圖(1-2)夾子動作下訊號不導通6
圖(1-3)未受靜電力吸引7
圖(1-4)受靜電力吸引7
圖(2-1)未施加靜電壓10
圖(2-2)施加靜電壓10
圖(2-3)致動器未變形前12
圖(2-4)致動器變形後12
圖(2-5)微波開關之上視圖12
圖(2-6)GaAs微波開關結構之側剖面圖14
圖(2-7)Si微波開關結構之側剖面圖15
圖(2-8)台積電0.6 m SPTM製程之側剖面16
圖(2-9)共面波導之上視圖17
圖(2-10) 共面波導之側面剖視圖17
圖(2-11) 致動器之上視圖18
圖(2-12) 致動器之側視圖18
圖(3-1)GaAs微波開關的製作流程19
圖(3-2)GaAs微波開關光罩22
圖(3-3)顯影後光阻的厚度24
圖(3-4)掀舉金屬後3 m間距的結果24
圖(3-5)乾蝕刻砷化鎵基材深度達15.5 m25
圖(3-6)微結構懸浮於砷化鎵基材上28
圖(3-7)Si微波開關的製作流程29
圖(3-8)Si微波開關光罩32
圖(3-9)掀舉金屬後3 m間距的結果34
圖(3-10) 蝕刻二氧化矽及氮化矽35
圖(3-11) 乾蝕刻矽基材深度達3.3 m36
圖(3-12) 微結構懸浮於矽基材上39
圖(3-13) CMOS開關的製作流程40
圖(3-14) 蝕刻二氧化矽深度達5 m43
圖(3-15) 深蝕刻矽基材達5 m44
圖(3-16) 微結構表面成長4000 Å的PECVD二氧化矽46
圖(3-17-1) 平行四邊形致動器懸浮於矽基材上47
圖(3-17-2) T型夾子懸浮於矽基材上47
圖(3-18-1) CF4非等向性蝕刻矽之示意圖48
圖(3-18-2) 矽基材上有2000-3000 Å的SixCyFz等非揮發性物質49
圖(3-19) 右圖為SiC4蝕刻矽基材;左圖為CF4+O2蝕刻矽基材50
圖(3-20) 蝕刻時間與蝕刻深度之關係52
圖(3-21-1) 未蝕刻前52
圖(3-21-2) 蝕刻5分鐘52
圖(3-21-3) 蝕刻10分鐘52
圖(3-21-4) 蝕刻15分鐘52
圖(3-21-5) 蝕刻20分鐘53
圖(3-21-6) 蝕刻25分鐘53
圖(3-22) 致動器之側視圖54
圖(3-23) CMOS微波開關的上視圖55
圖(3-24) 第一種蝕刻深度尺的上視圖56
圖(3-25) 第一種蝕刻深度尺的側面示意圖56
圖(3-26) 第二種蝕刻深度尺脫離矽基材58
圖(4-1)高頻訊號探針及直流電壓探針的量測接點59
圖(4-2)GaAs微波開關的的高頻訊號量測結果60
圖(4-3)Si微波開關的的高頻訊號量測結果61
圖(4-4)CMOS微波開關的的高頻訊號量測結果62
圖(5-1)修改後之共面波導63
圖(5-2)將微波傳輸線下方的矽基材掏空64
1. “MEMS — Microelectromechanical System”, Mechanical Engineering, Feb.1992, pp.40 - 47.
2. T.V. Roszhart, etc., “An Inertial - Grade, Micromachined Vibrating Beam Accelerometer”, Proc. Transducers‘ 95, pp. 656 - 658 (1995).
3. J. Marty, etc., “Fiber - Optical Accelerometer Using Silicon Micromachining Techniques”, Sensors and Actuators A, 46 - 47, pp. 470 - 473 (1995).
4. T. Storgarrd-Larsen, etc., “Opto-Mechanical Accelerometer Based on Strain Sensing by a Bragg Grating in a Planar Waveguide”, Proc. Transducers ‘95, pp. 667 - 670 (1995).
5. H. Seidel, etc., “A Piezoresistive Silicon Accelerometer with Monolithically Integrated CMOS-Circuitry”, Transducers ‘95, pp. 597 - 600 (1995).
6. B. Warneke, etc., “Monolithic Multiple Axis Accelerometer Design in Standard CMOS”, Preprint, Proc. SPIE 1995 Symposium on Micromachining and Microfabrication (1995).
7. Kalvesten, J.E. etc. “First surface micromachined pressure sensor for cardiovascular pressure measurements”, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1998, p.574-579.
8. Hierold, C. etc. “Implantable low power integrated pressure sensor system for minimal invasive telemetric patient monitoring”, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1998, pp.568-573.
9. Okojie, Robert S. etc. “Operation of alpha (6H)-SiC pressure sensor at 500 DGR C”, Sensors and Actuators, A: Physical 66, 1-3, Apr 1998, pp.200-204.
10. Goldman, K. etc. “Vertically integrated media-isolated absolute pressure sensor”, Sensors and Actuators, A: Physical 66, 1-3, Apr 1998, pp.155-159.
11. Bistue, G. etc. “Micromachined pressure sensor for biomedical applications”, Journal of Micromechanics and Microengineering, Sep 1997, pp.244-246.
12. Nakamura, S. etc. “One-body MEMS device composed of mutually insulated metallic parts - fabrication processes for a microactuator for high- density hard disk drives”, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1998, pp.278-283.
13. Akiyama, Terunobu etc. “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS”, Journal of Microelectromechanical Systems, Mar 1997, pp.10-17.
14. Imamura, Takahiro etc. “Transverse mode electrostatic microactuator for MEMS-based HDD slider”, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1996, pp.216-221.
15. Comtois, John H. etc. “Applications for surface-micromachined polysilicon thermal actuators and arrays”, Sensors and Actuators, A: Physical, Jan 1997, pp.19-25.
16. Horenstein, Mark N. etc. “Electrostatic effects in micromachined actuators for adaptive optics”, Journal of Electrostatics, Oct 1997, pp.69-81.
17. Tas, N.R. etc. “Surface micromachined linear electrostatic stepper motor”, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1997, pp.215-220.
18. Ohmachi, Yoshiro etc. “Numerical analysis of an optical motor based on the radiation pressure”, Proceedings of SPIE - The International Society for Optical Engineering v 2882, 1996, pp.333-338.
19. Koch, Michael etc. “Novel micromachined pump based on thick-film piezoelectric actuation”, International Conference on Solid-State Sensors and Actuators, Proceedings 1, 1997, pp.353-356.
20. Zengerle, R. etc. “A micro membrane pump with electrostatic actuation”, Proceedings of the IEEE Micro Electro Mechanical Systems Workshop Travemuende, Ger, Feb 1992, pp.19-24.
21. Gonzalez, C. etc. “Magnetically actuated fiber-optic switch with micromachined positioning stages”, Optics Letters, May 1997, pp.709-711.
22. Gonzalez, C. etc. “Micromachined 1MUL n fiber-optic switch”, IEEE Photonics Technology Letters, May 1997, pp.616-618.
23. Greywall, Dennis S. etc. “Micromechanical optical switch with a zone-plate reflector”, Journal of Physics D: Applied Physics, Aug 1997, pp.2191-2208.
24. Seo, Kyoung-Sun etc. “Bulk-micromachined silicon micromirror for tunable optical switch applications”, IEEE Symposium on Emerging Technologies & Factory Automation ETFA 2, 1996, pp. 404-407.
25. Nogimori, Wataru etc. “Laser-powered micro-gripper”, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1997, pp.267-271.
26. Takahashi, K. etc. “Full colored LED display panel fabricated on a silicon microreflector”, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1997, pp.356-359.
27. Younse, Jack M. etc. “Projection display systems based on the Digital Micromirror Device (DMD)”, Proceedings of SPIE - The International Society for Optical Engineering v 2641, 1995, pp.64-75.
28. Jaecklin, V.P. etc. “Line-addressable torsional micromirrors for light modulator arrays”, Sensors and Actuators, A: Physical v 41, Apr 1994, pp.324-329.
29. Walker, J.A. etc. “Performance and packaging implications of a MEMS based optical modulator for WDM fiber-to-the-home systems”, Proceedings - Electronic Components and Technology Conference, 1997, pp.601-606.
30. C. T.-C. Nguyen, “Micromachining technologies for miniaturized communication devices”, Proceedings of the 1998 SPIE MEMS Conference, Santa Clara, California, Sept. 20-22, 1998.
31. C. T.-C. Nguyen, “Communications applications of microelectromechanical systems”, Proceedings of Sensors Expo, San Jose, California, May 20, 1998.
32. L. P.B. Katehi, G. M. Rebeiz, and C. T.-C. Nguyen, “Micromachining technologies for microwave/mm-wave applications”, Proceedings of the IEEE MTT-S International Microwave Symposium, Baltimore, Maryland, June 7-12, 1998.
33. C. T.-C. Nguyen “Frequency-selective MEMS for miniaturized communication devices”, Proceedings, 1998 IEEE Aerospace Conference, vol. 1, Snowmass, Colorado, March 21-28, 1998, pp. 445-460.
34. C. T.-C. Nguyen “Micromechanical devices for wireless communications”, Proceedings, 1998 IEEE International Workshop on Micro Electro Mechanical Systems, Heidelberg, Germany, Jan. 25-29, 1998, pp.1-7.
35. C. T.-C. Nguyen “High-Q micromechanical oscillators and filters for communications”, Proceedings, 1997 IEEE International Symposium on Circuits and Systems, Hong Kong, June 9-12, 1997, pp.2825-2828.
36. K.M. Lakin etc. “Development of miniature filters for wireless applications”, IEEE Trans. Microwave Theory Tech., vol. 43, Dec 1995, pp. 2933-2939.
37. D.J. Young and B.E. Boser “A micromachined variable capacitor for monolithic low-noise VOCs”, Technical Digest, 1996 Solid-State Sensor and Actuator Workshop, June 1996, pp.86-89.
38. J.A. Von arx and K. Najafi “On-chip coils with integrated cores for remote inductive powering of integrated microsystems”, Transducers’97, 1997, pp.999-1002.
39. M.G. Allen “micromachined intermediate and high frequency inductors”, IEEE International Symposium on Circuits and Systems, Jun 1997, pp.2829-2832.
40. K.E. Petersen, “ Micromechanical Membrane Switch on Silicon ”, IBM J,Res.Develop.,vol.23,No.4,July 1979, pp.376-385.
41. Lawrence E. Larson, Roy H. Hackett, Melissa A. Melendes, Ross F. Lohr, “ Micromachined Microwave Actuator (MIMAC) Technology-A New Turning Approach for Microwave Integrated Circuits ”, IEEE 1991 MMIC Symposium, pp.27-30.
42. J. Jason Yao, M. Frank Chang, “ A Surface Micromachined Miniature Switch for Telecommunication Application with Signal Frequencies form DC up to 4 GHz ”, Transducers’95, pp.384-387.
43. C. Goldsmith, J. Randall,S.Eshelman, T.H. Lin, D. Denniston, S. Chenm, B. Norvell, “ Characteristics of Micromachined Switch at Microwave Frequencies ”, 1996 IEEE MTT-S Digest, pp.1141-1144.
44. S. Pacheco, C.T. Nguyen, and L.P.B. Katehi, “ Micromechanical electrostatic K-band switches ”, Proceedings, IEEE MTT-S Internatiol Microwave Symposium, Baltimore, Maryland, June 7-12, 1998, pp.1569-1572.
45. Chienliu Chang, “ Electrostatic Microactuator ”, Ph.D. Dissertation, 1998, Institute of Applied Mechanics, National Taiwan University.
46. Z. Lisa Zhang and Noel C. MacDonal, “An RIE Process for Submicron Silicon Electromechanical Structures”, 1991 IEEE MEMS.
1. Kevin A. Shaw, Z. Lisa Zhang and Noel C. MacDonal, “SCREAM I:a single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures”, J. of sensors and actuators, 1994, pp.63-70.
48. Noel C. MacDonal, “SCREAM MicroElectroMechanical Systems”, J. of Microelectronic Engineering, 1996, pp.49-73.
49. G. K. Fedder, S. Santhanam, M. L. Reed, S. C. Eagle, D. F. Guillou, M. S. C. Lu, and L. R. Carley, “Laminated High-Aspect-ratio Microstructures in a conventional CMOS Process” , 1996 IEEE MEMS.
50. Harrie A C Tilmans, Kris Baert, Agnes Verbist and Pobert, “CMOS foundry-based micromachining” , J. Micromech. Microeng., 1996, pp.122-127.
51. N. Takeshima, K.J. Gabriel, M. Ozaki, J. Takahashi, H. Horiguchi, H. Fujita, “ Electrostatic Parallelogram Actuators ”, 1991 International Conference on Solid-State Sensors and Actuators San Francisco, CA, USA, pp.63-66.
52. Gere and Timosheko, Mechanics of Material, Second Edition, PWS Engineering, Boston, MA, 1984.
53. Z. Lisa Zhang, Noel C. MacDonal, “Fabrication of Submicron High-Aspect-Ratio GaAs Actuators”, J. of Mocroelectromechanical Systems, 1993, pp.66-73.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 呂建政(民83)。發展休閒教育的幾個課題。訓育研究,33(2),21-28。
2. 呂建政(民85)。倡導休閒教育與輔導─健全青少年身心發展。測驗與輔導,137,2818-2820。
3. 余嬪(民85)。國中生之學業成就與遊憩參與型態。測驗與輔導,137,2826-2829。
4. 余嬪(民86)。提高全民休閒素養由加強休閒教育開始。教育研究雙月刊,55,6-9。
5. 沐桂新(民84)。休閒治療─休閒活動的醫療及心理輔導效能之探討。學生輔導通訊,39,38-43。
6. 林一真(民84)。休閒輔導模式與休閒輔導實務。學生輔導雙月刊,39,24-31。
7. 徐西森(民85)。青少年休閒生活之規劃與輔導。輔導季刊,32(2),5-12。
8. 徐永能(民78)。休閒教育的科技整合。師友月刊,266,8-9。
9. 高俊雄(民85)。青少年的休閒自我管理。測驗與輔導,137,2823-2825。
10. 陳美芬(民85)。淺談青少年的休閒活動及其功能。國教之聲,29(3),37-42。
11. 黃立賢(民85a)。青少年休閒輔導─模式與取向。測驗與輔導,137,2833-2836。
12. 黃立賢(民85b)。青少年休閒教育面面觀。輔導通訊,46,13-17。
13. 黃立賢(民88)。中小學教師實施休閒教育實務篇─觀念與策略之探討。學生輔導,60,80-89。
14. 黃德祥(民80)。青少年休閒諮商與輔導的功能與實施。成人教育,2,52-56。
15. 黃德祥(民81)。休閒輔導與學生發展。學生輔導通訊,21,14-21。