(3.237.178.91) 您好!臺灣時間:2021/03/07 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高秋燕
研究生(外文):Kao, chiu-yen
論文名稱:展透理論及其在隨機阻抗網絡之應用
論文名稱(外文):Percolation Theory and Its Application to Random Resistor Network
指導教授:張建成張建成引用關係
指導教授(外文):Chang, chien-cheng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:106
中文關鍵詞:展透理論蒙地卡羅法重整群法隨機阻抗網絡換尺定律
外文關鍵詞:Percolation TheoryMonte Carlo MethodRenormalization MethodRandom Resistor NetworkUniversal Scaling Laws
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文簡單介紹了展透理論的概念及將其應用到隨機阻抗網絡問題上

In this thesis, we briefly review the percolation theory and apply it to random resistor network problem.
We start with reviewing site percolation, bond percolation, percolation quantities and critical exponents. It has been conjectured that there exists a universal scaling law between critical exponents. We examine the scaling law by carrying out numerical simulation and use the finite-size scaling analysis to evaluate the various critical exponents.
To study the problem of random resistor network, we use real-space renormalization to work out the exact critical exponents of 3*3 bond square lattice and 2*2*2 bond simple cubic lattice. Although the exact renormalization solutions are not the exact solutions, we got reasonable approximations. In the case of square lattice, the fixed point of probability is equal to the exact percolation threshold and so we got very good estimates of other critical exponents. In the case of simple cubic lattice, renormalization method offers us a quicker approach of critical exponents. However, the results are not so good because the fixed point is not very close to percolation threshold. If we use the best numerical estimate of percolation threshold as the fixed point, we also can get very good approximations of critical exponents. In addition, we show the numerical solutions of percolation threshold by Monte Carlo Renormalization Method. It is found to be a good method to derive more precise estimate of percolation threshold.
The new contribution of this thesis is the exact renormalization results of 3*3 bond square lattice and 2*2*2 simple cubic lattice. We list all configurations in Appendix A and B. In two-dimensional lattice, we also work out the fixed-point p* and for several small lattices.

Symbol Table i
Abstract ii
Chapter 1 Introduction 1
Chapter 2 Percolation Theory 4
2.1 Introduction4
2.2 What is Percolation 4
2.3 Percolation Quantities5
2.4 Exact Solution of Percolation10
2.5 The Universal Scaling Laws13
2.6 Numerical Solution of Percolation18
Chapter 3 Renormalization Approach to Percolation25
3.1 Introduction25
3.2 Small Cell Renormalization25
3.3 Large Call Renormalization33
Chalper 4 Application to Conductivity35
4.1 Introduction35
4.2 Random Resistor Network35
4.3 Critical Exponents36
4.4 Renormalization Approach to Critical Exponents38
Conclusion45
Future research46
References47
Appendix50
Appendix A51
Appendix B91

Bernasconi, J. (1978) Real-space Renormalization of Bond-Disordered Conductance Lattices. Phys. Rev. B. 18, 2185-2191.
Broadbent, S.R. & Hammersley, J.M. (1957) Percolation Processes. Proc. Camb. Philos. Soc. 53, 629.
Conway, A.R. & Guttmann, A.J. (1995) On Two-dimensional Percolation. J. Phys. A. 28, 891-904.
Derrida, B., Zabolitzky, J.G., Vannimenus, J., & Stauffer, D. (1984) A Transfer Matrix Program to Calculate the Conductivity of Random Resistor Networks. J. Stat. Phys. 36, 31-42.
Deutscher, G., Entin-Wohlman, O., Fishman, S. & Shapira, Y. (1980) Percolation Description of Granular Superconductors. Phys.Rev. B. 21, 5041-5047.
Eggarter, T.P. & Cohen, M.H. (1970) Simple Model for Density of States and Mobility of an Electron in a Gas of Hard-Core Scatterers. Phys. Rev. Lett. 25, 807.
Fisher, M.E. (1971) In Critical Phenomena: Enrico Fermi Summer School, edited by M.S. Green, New York, Academic Press.
Flory, P.J. (1941) Molecular Size Distribution in Three Dimensional Polymers. J. Am. Chem. Soc. 63, 3083-3090.
Frisch, H.L., Sonnenblick,E., Vyssotsky, V.A., & Hammersley, J.M. (1961) Critical Percolation Probabilities (Site Problem). Phys. Rev. 124, 1021-1022.
George, H.W. (1994) Contemporary Problems in Statistical Physics. Society for Industrial and Applied Mathematics, Philadelphia.
Hong, D.C. & Stanley, H.E. (1983) Cumulant Renormalization Group and Its Application to the Incipient Infinite Cluster in Percolation. J. Phys. A: Math. Gen. 16, L525-529.
Hoshen, J. & Kopelman, R. (1976) Percolation and Cluster Distribution. Phys. Rev. B 14, 3428-3445.
Hovi, J.P. and Aharony, A. (1997) Different Self-Avoiding Walks on Percolation Clusters: A Small-Cell Real-Space Renormalization-Group Study. J. Stat. Phys. 86, 1163-1178.
Kirkpatrick, S. (1973) Percolation and Conduction. Rev. Mod. Phys. 45, 574-588.
Last, B.J. & Thouless, D.J. (1971) Percolation Theory and Electrical Conductivity.Phys. Rev. Lett. 27, 1719-1721.
Larson, R.G., Scriven, L.E., & Davis, H.T. (1977) Percolation Theory of Residual Phases in Porous Media. Nature. 268, 409-413.
Lobb, C.J. & Frank, D.J. (1979) A Large-Cell Renormalization Group Calculation of the Percolation Conduction Critical Exponent. J. Phys. C: Solid St. Phys. 12, L8270-830.
Lobb, C.J. & Karasek, K.R. (1982) Critical Exponents for Two —Dimensional Bond Percolation. Phys. Rev. B. 25, 492-495.
Magalhaes, Tsallis, C., & Schwachheim, G. (1980) Probability Renormalization Group Treatment of Bond Percolation in Square, Cubic and Hypercubic Lattices. J. Phys. C: Solid St. Phys. 13, 321-330.
Redelmeier, D.H. (1981) Counting Polyominoes: Yet Another Attack. Discrete Math. 36,191-203.
Reynolds, P.J., Stanley, H.E., & Klein, W. (1978) Percolation by Position-Space Renormalization Group with Large Cells. J. Phys. A: Math. Gen. 11, L199-207.
Reynolds, P.J., Stanley, H.E., & Klein, W. (1980) Large-Cell Monte Carlo Renormalization Group for Percolation. Phys. Rev. B 21, 1223-1245.
Sahimi, M. (1994) Applications of Percolation Theory. Taylor & Francis, London.
Stanley, H.E. (1977) Cluster Shapes at the Percolation Threshold. J. Phys. A 10, L211-220.
Seiden, P.E. & Schulman, L.S. (1990) Percolation Model of Galactic Structure. Adv. Phys. 39, 1-54.
Staufer, D. & Aharony, A. (1992) Introduction to Percolation Theory. Taylor & Francis, London.
Stockmayer, W.H. (1943) Theory of Molecular Size Distribution and Gel Formation in Branched-Chain Polymers. J.Chem.Phys. 11, 45-55.
Sykes, M.F. & Essam, J.W. (1963) Some Exact Critical Percolation Probabilities for Bond and Site Problems in Two Dimensions. Phys. Rev. Lett. 10, 3.
Sykes, M.F. & Essam, J.W. (1964) Exact Critical Percolation Probabilities for Site and Bond Problems in Two Dimensions. J. Math. Phys. 5, 1117-1127.
Vyssotsky, V.A., Gordon, S.B., Frisch, H.L., & Hammersley, J.M. (1961) Critical Percolation Probabilities (Bond Problem). Phys. Rev. 123, 1566-1567.
Webman, I., Jortner, J., & Cohen, M.H. (1975) Numerical Simulation of Electrical Conductivity in Microscopically Inhomogeneous Materials. Phys. Rev. B. 11, 2885-2892.
Webman, I., Jortner, J., & Cohen, M.H. (1977) Critical Exponents for Percolation Conductivity in Resistor Networks. Phys. Rev. B. 16, 2593-2596.
Wilson, K.G. (1971) Renormalization Group and Critical Phenomena. Phys. Rev. B 4, 3184-3205.
Ziman, J.M. (1968) The Localization of Electrons in Ordered and Disordered Systems. J. Phys. C: Proc. Phys. Soc., London 1, 1532-1538.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔