(44.192.10.166) 您好!臺灣時間:2021/03/06 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃于峰
研究生(外文):Huang Yue-Fong
論文名稱:應用厭氧生物濾床處理含NO廢氣之研究
論文名稱(外文):Study on Application of Anaerobic Biofilter Treating NO Containing Exhaust Gases
指導教授:楊萬發楊萬發引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:135
中文關鍵詞:厭氧生物濾床一氧化氮溫度
外文關鍵詞:anaerobicbiofilternitric oxidetemperature
相關次數:
  • 被引用被引用:2
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為使用厭氧生物濾床,將牛糞堆肥以及稻殼所組成之濾料,以含有脫硝菌種之水樣植種,微生物附著於濾料上行生物性脫硝反應,而去除廢氣中之一氧化氮。所使用的濾料對NO氣體有很低的吸附性,平衡吸附量只有0.1∼0.3 mg NO/g濾料,其貫穿時間在1∼3小時之間,表示其吸附量只需數小時即可達到飽和。
進流流量越大,厭氧生物濾床中進流端所測得之相對溼度值即越小。平均濾床壓損為0.43 cm,根據實驗結果可知若有越大的進流流量時,濾床之平均壓損也就跟著越大,反之亦然。
當進流氣體之流量越大時,厭氧生物濾床對NO氣體之去除效率就會越小。進流濃度之變化對於生物濾床處理NO氣體的效率,其影響不若進流流量來得明顯。當流量達1,500 ml/min時,才能明顯看出提高進流濃度會降低生物濾床之處理效率。
在生物濾床內添加緩衝劑後,厭氧生物濾床總去除率方面可增加6∼9個百分比。添加外加碳源後其處理效率可上升13∼16個百分比左右,可知添加外加碳源的效應是比添加緩衝劑要來得明顯的。對於濾床內之脫硝菌種而言,其對溫度之變化非常敏感,只要將溫度增加個1℃左右,總去除率即可增加1∼3個百分比。
This study took advantage of the anaerobic biofilter, which was packed with the media composed of composts and chaff, and the water containing denitrifying bacteria was blended into it, to eliminate the nitric oxide (NO) in the waste gases. The media in use had quite low adsorption quantity for the NO containing gases, only adsorbed 0.1 to 0.3 mg per 1g media at equilibrium. Also the breakthrough time was between 1 to 3 hours. This phenomenon had shown that the quantity for adsorption of the media only took few hours to reach the saturation.
Bigger the inflow flowrate, smaller the relative moisture that measured at the inlet part of the anaerobic biofilter. The average pressure loss of the biofilter was 0.43 cm. According to the experiment consequence, known that the average pressure loss increased with the increasing inflow flowrate, vice versa.
When the flowrate of the inlet gases increased, the NO removal efficiency of the anaerobic biofilter was decreased. The influence of the change of inflow concentration was less obvious than the inflow flowrate effect for the NO removal efficiency. Only when the flowrate reached 1,500 ml/min, the result that raising the inflow concentration would cause the lower treating efficiency of the biofilter, could be evident.
After adding buffers into the biofilter, the total removal rate of the anaerobic biofilter increased by 6 to 9%. But the treating efficiency could increase 13 to 16% after adding extra carbon source. So the adding-extra-carbon-source effect was more obvious than the adding-buffer effect. For the denitrifying bacteria in the biofilter, they were very sensitive to the temperature change. The total removal rate could increase 1 to 3%, only needed raising the temperature about 2℃.
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅱ
目錄……………………………………………………………………..Ⅲ
圖目錄…………………………………………………………………..Ⅶ
表目錄…………………………………………………………………..Ⅸ
符號說明………………………………………………………………..Ⅹ
第一章 緒論……………………………………………………………1
1.1 前言…………………………………………………………...1
1.2 研究緣起……………………………………………………...1
1.3 研究方法與目的……………………………………………...2
第二章 文獻回顧………………………………………………………5
2.1 氮氧化物……………………………………………………...5
2.1.1 一氧化氮………………………………………………...6
2.1.2 二氧化氮………………………………………………...9
2.2 生物濾床處理法…………………………………………….11
2.2.1 生物處理法介紹……………………………………….11
2.2.1.1生物濾床法……………………………………..14
2.2.1.2生物洗滌塔法…………………………………..15
2.2.1.3生物滴濾塔法…………………………………..15
2.2.2 生物濾床法之原理…………………………………….16
2.2.3 生物濾床法之操作參數……………………………….17
2.2.4 應用生物濾床法處理氮氧化物……………………….23
2.1.5 生物濾床法之應用…………………………………….25
第三章 實驗設計與分析方法………………………………………..27
3.1 實驗設計…………………………………………………….27
3.1.1濾料基本性質實驗……………………………………..27
3.1.2菌種培養實驗…………………………………………..29
3.1.3濾床主體架構…………………………………………..29
3.1.4濾料吸附特性實驗……………………………………..29
3.1.5背景條件記錄…………………………………………..30
3.1.6生物濾床實驗…………………………………………..30
3.1.7結論與建議……………………………………………..35
3.2 分析方法…………………………………………………….35
3.2.1 濾料基本性質實驗…………………………………….35
3.2.1.1濾料篩選………………………………………..35
3.2.1.2比重分析………………………………………..36
3.2.1.3孔隙率分析……………………………………..36
3.2.1.4含水率分析……………………………………..37
3.2.1.5灰分分析………………………………………..38
3.2.1.6揮發分分析……………………………………..38
3.2.1.7固定碳分析……………………………………..39
3.2.1.8酸鹼值分析……………………………………..40
3.2.1.9 C、H、N元素分析……………………………40
3.2.2 菌種培養實驗………………………………………….41
3.2.2.1菌種選擇與培養………………………………..41
3.2.2.2電子顯微鏡照相………………………………..41
3.2.3 濾料吸附特性實驗…………………………………….42
3.2.4 生物濾床實驗………………………………………….42
3.2.4.1背景條件紀錄…………………………………..42
3.2.4.2生物濾床實驗紀錄……………………………..43
3.2.4.3實驗條件變換…………………………………..45
第四章 結果與討論…………………………………………………..46
4.1 濾料基本性質分析………………………………………….46
4.1.1 濾料調製……………………………………………….46
4.1.2 基本性質分析………………………………………….47
4.1.2.1比重……………………………………………..47
4.1.2.2孔隙率…………………………………………..48
4.1.2.3含水率…………………………………………..48
4.1.2.4灰分……………………………………………..48
4.1.2.5揮發分…………………………………………..49
4.1.2.6固定碳…………………………………………..49
4.1.2.7 pH值……………………………………………49
4.1.2.8 C、H、N元素分析………………………………50
4.2 菌種培養實驗……………………………………………….51
4.2.1菌種採樣與測試……………………………………….51
4.2.2菌種馴養與植種……………………………………….52
4.2.3菌相觀察……………………………………………….53
4.3 濾料吸附特性實驗………………………………………….56
4.4 生物濾床實驗……………………………………………….61
4.4.1背景條件記錄………………………………………….61
4.4.2生物濾床實驗………………………………………….68
4.4.2.1進流流量之影響………………………………..73
4.4.2.2進流濃度之影響………………………………..78
4.4.2.3添加緩衝劑之影響……………………………..83
4.4.2.4添加外加碳源之影響…………………………..85
4.4.2.5溫度之影響……………………………………..87
4.4.2.6生物濾床負荷…………………………………..91
4.4.2.7生物濾床時效性之探討………………………..94
4.4.2.8濾料變化之探討………………………………..96
4.4.3濾料電子顯微鏡照相………………………………….98
第五章 結論與建議…………………………………………………102
5.1 結論……………………………………………………….102
5.2 建議……………………………………………………….104
參考文獻………………………………………………………………106
附錄A 生物濾床監測記錄…………………………………………112
附錄B 一氧化氮分析儀檢量線……………………………………135
一、 中文部分
1. 行政院環保署,「環境保護年鑑」,(1993∼1996)。
2. 中國技術服務社,「氮氧化物控制技術講習會」,IPC-TT06(1997)。
3. 行政院勞工安全委員會勞工安全衛生研究所,「物質安全資料表」,(1998)。
4. 行政院環保署,「瀝青拌合業、玻璃業、耐火磚、鍋爐、發電機等業別氮氧化物排放規範及減量技術評估」,EPA-85-1401-09-40,(1996)。
5. 行政院環保署環境檢驗所,「環境檢測方法(86年版)」,A411.70A,(1997)。
6. 吳俊耀,「廢氣生物濾床處理技術」,工業污染防治第46期,第93-105頁,(1993)。
7. 周明顯、黃俊傑,「以生物滴濾塔處理排氣中丁酮成分之操作性能研究」,第11屆空氣污染控制技術研討會論文集,第131-144頁,(1994)。
8. 楊倩,「應用生物濾床法處理揮發性有機物之研究」,國立台灣大學環境工程研究所碩士論文,(1994)。
9. 周明顯、鄭文熙,「以生物濾床法處理揮發性有機物-本土化濾料篩選研究」,第11屆空氣污染控制技術研討會論文集,第153-163頁,(1994)。
10. 楊佑群,「應用生物濾床法處理含氮氧化物廢氣之研究」,國立台灣大學環境工程研究所碩士論文,(1998)。
11. 呂正期,「應用生物濾床法處理含揮發性有機廢氣之研究」,國立台灣大學環境工程研究所碩士論文,(1997)。
二、 英文部分
Apel, William A., Joni M. Barnes, and Karen B. Barrett, “Biofiltration of Nitrogen Oxides from Fuel Combustion Gas Streams”, 88th Annual AWMA Meeting & Exhibition, 95-TP9C.04 (1995).
B. Hinrich, “Consider Biofiltration for Decontaminating Gases”, Chemical Engineering Progress, Vol. 88, No. 4, pp. 34-40 (1992).
Barnes, J. M., W. A. Apel and K. B. Barrett, “Removal of Nitrogen Oxides from Gas Streams Using Biofiltration”, Journal of Hazardous Materials, Vol. 41, pp. 315-326 (1995).
Bitton, G., “Wastewater Microbiology”, John Wiley & Sons, Inc., pp 57-61 (1994).
Crawford, M., “Air Pollution Control Theory”, McGraw-Hill, pp. 471 (1976).
D. Eitner, H. G. Gethke, “Design, Construction, and Operation of Biofilters for Odor Control in Sewage Treatment Plants”, the 80th Annual Meeting of APCA, June, pp. 21-26 (1987).
Deheyder, B., A. Overmerire, H. Van Langenhove and W. Verstraete,
“Ethene Removal from a Synthetic Waste Gas Using a Dry Biobed”, Biotechnology and Bioengineering, Vol. 44, pp. 642-648 (1994).
Deshusses, M. A., G. Hamer and I. J. Dunn, “Transient-State Behavior of a Biofilter Removing Mixtures of Vapors of MEK and MIBK from Air”, Biotechnology and Bioengineering, Vol. 49, pp. 587-598 (1996).
Frachetti, Robert W., Mark Ballerstein P. E., and Tim A. Seeler, P. E. “Design of a Full-Scale Biofilter for Odor Control”, the Annual Meeting of WPCF, pp. 35-45 (1993).
Hodge, D. S. and J. S. Devinny, “Biofilter Treatment of Ethanol Vapors”, Environmental Progress, Vol. 13, No. 3, pp. 167- 173 (1994).
Kampbell, Don H. and John T. Wilson, Harvey W. Read and Thomas T. Stocksdale, “Removal of Volatile Aliphatic Hydrocarbons in a Soil Bioreactor”, Journal of the Air Pollution Control Association, Vol. 37, No. 10, pp. 1236-1240 (1987).
Knauf, S. A., “Biofilter Applications with High Concentrations of Hydrogen Sulfide in a Waste Water Treatment Plant and an Oil Mill”, 88th Annual AWMA Meeting & Exhibition, 95-MP9A.03 (1995).
Kardono and E. R. Allen, “Elimination of Benzene Using a Compost Biofilter”, 88th Annual AWMA Meeting & Exhibition, 95-TP9C.01 (1995).
Lackey, L. and T. Holt, “Not for the Birds”, WEF Industrial Wastewater, May/June, Vol. 4, No. 3, pp. 31-33 (1996).
Leson, G., and Seshu Dharmavaram, “A Status Overview of Biological Air Pollution Control”, 88th Annual AWMA Meeting & Exhibition, 95-MP9A.01 (1995).
Leson, G., R. Chavira and A. Winer, “Experiences with a Full-Scale Biofilter for Control of Ethanol Emissions”, 88th Annual AWMA Meeting & Exhibition, 95-MP9A.04 (1995).
Lewis, Richard J. SR, “Hazardous Chemicals Desk Reference”, Third Edition, Van Nostrand Reinhold (1993).
Loy, J., “Biological Elimination of Odoriferous Pollutants and Solvents in
Waste Gas with the Biotrickling Filter”, 88th Annual AWMA Meeting & Exhibition, 95-MP9A.06 (1995).
Morgenroth, E. E. D. Schoeder, D. P. Y. Chang and K. M. Scow, “Nutrient Limitation in a Compost Biofilter Degrading Hexane”, 88th Annual AWMA Meeting & Exhibition, 95-TP9C.05 (1995).
Nagase, H., K. Yoshihara, K. Eguchi, Y. Yokota, R. Matsui, K. Hirata and K. Miyamoto, “Characteristics of Biological NOx Removal from Flue Gas in a Dunaliella tertiolecta Culture System”, Journal of Fermentation and Bioengineering, Vol. 83, No. 5, pp. 461-465 (1997).
Ottengraf, S. P. P., “Exhaust Gas Purification”, Biotechnology, H. -J. Rehm and Eds G. Reed, VCH Verlagsgesellschaft, Weinheim, Germany. Vol. 8, Chapter 12, pp. 427-452 (1986).
Paokop, William H. “Soil Bed System for Control of Rehdering Plant Odors”, Journal of the Air Pollution Control Association, Vol. 35, No. 12, pp. 1332-1338 (1985).
S. Zarook Shareefdeen, C. B. Basil, Y. S. Oh, R. Bartha, “Biofiltration of Methanol Vapor”, Biotechnology and Bioengineering, Vol. 41, pp. 512-523 (1993).
Seinfeld, J. H. “Atmospheric Chemistry and Physics of Air Pollution”, John Wiley & Sons, Inc. (1986).
Singleton, B. and W. Kant, “Three Case Studies of Biofiltration for the Removal of BTEX Compounds, H2S, and Organic Reduced Sulfur Compounds”, 88th Annual AWMA Meeting & Exhibition, 95-MP9A.07 (1995).
Tang, H. M., S. J. Hwang, S. C. Hwang, “Dynamics of Toluene Degradation in Biofilters”, Hazardous Waste & Hazardous Materials, Vol. 12, No. 3, pp. 207-219 (1995).
Tang, Hsiu-Mu, Shyh-Jye Hwang, Sz-Chwi Hwang, “Waste Gas Treatment in Biofilters”, J. Air & Waste Manage. Assoc., Vol. 46, pp. 349-354 (1996).
Thibodeaux, Louis J., “Environmental Chemodynamics,'''' John Wiley & Sons, Inc., pp. 558 (1996).
Worden, R. M. and Donaldson, T. L., “Dynamics of a Biological Fixed Film for Phenol Degradation in a Fluidized-Bed Bioreactor”, Biotechnology and Bioengineering, Vol. 30, pp. 398-412 (1987).
Zhang, L., M. Hirai and M. Shoda, “Removal Characteristics of Dimethyl
Sulfide, Methanethiol and Hydrogen Sulfide by Hyphomicrobium sp. I55
Isolated from Peat Biofilter”, Journal of Fermentation and Bioengineering, Vol. 72, No. 5, pp. 392-396 (1991).
Zilli, M., Converti, A., Lodi, A., Borghi, D. M., and Ferraiolo, G., “Phenol Removal from Waste Gases with a Biological Filter by Pseudomonas putida”, Biotechnology and Bioengineering, Vol. 41, pp. 693-699 (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔