參考文獻
Abdulbary, A. F.; Lai, L. L.; Al-Gobaisi, D. M.K.; Husain, A. (1993). Experience of using the neural network approach for identification of MSF desalination plants. Desalination, 92(1-3), 323-332.
Ahuja, L. R. and Lehman, O. R. (1983). The extent and nature of rainfall-soil interaction in the release of soluble chemicals to runoff. J. Environ. Qual., 12, 34-40.
Ambrose, R. B., Barnwell, T. O. (1989). Environmental Software at the U. S. Environmental Protection Agency*s Center for Exposure Assessment Modeling,, Environment Software, 4(2), 76-93.
Basheer, I A; Reddi, L N; Najjar, Y M. (1996). Site Characterization by Neuronets: An Application to the Landfill Siting Problem. Ground water, 34(4), 610-619.
Basheer, I. A.; Najjar, Y. M.; Hajmeer, M. N. (1996). Neuronet Modeling of VOC Adsorption by GAC. Environmental technology, 17(8), 795-804.
Basheer, I. and Najjar, Y. M. (1996). Predicting dynamic response of adsorption columns with neural nets. J. Comp. in Civil Engrg, ASCE, 10(1), 31-39.
Basheer, I. and Najjar, Y. M., and Swartz, S. (1994). Predicting permeability of compacted clay using an artificial neural network. Intelligent engineering systems through artificial neural networks. 4, 1161-1166.
Benitez, J. M., Castro, J. L. and Requena, I. (1997). Are Artificial Neural Networks Black Boxes?. IEEE Transactions on Neural Networks, 8(5), 1156-1164.
Bennett, C. O., Myers, J. E. (1974). Momentum, Heat, and Mass Transfer, New York, McGraw-Hill Book Co.
Boger, Zvi. (1992). Application of Neural Networks to Water and Wastewater Treatment Plant Operation. ISA transactions : a publication of Instrument Society of America, 31(1), 25-34.
Cal, Y (1995). Soil classification by neural network. Advances in engineering software, 22(2), 95-98.
Cammarata, G., Cavalieri, S. and Fichera, A. (1995). Neural network architecture for noise prediction, Neural Networks 8(6), 963-973.
Capodaglio, A., Jones, H. (1992). Real Time Control of wastewater treatment operations, Water Science and Technology, 25, 89-101.
Chen, S., Billing, S. A. and Grant, P. M. (1990). Non-linear system identification using neural networks, Int. J. Control, 51(6), 1191-1214.
Chuah, H. T., (1993). Retrieval of soil moisture content from radar backscatter coefficients, International Geoscience and Remote Sensing Symposium (IGARSS), 1, 338-340.
Coit, David W; Smith, Alice E. (1996). Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach. Computers & operations research, 23(6), 515-524.
Conlin, J.; Peel, C.; Montague, G. A. (1997). Modelling pressure drop in water treatment. Artificial intelligence in engineering, 11(4), 393-402.
Deutsch, C. V., A. G. Journel, (1992). GSLIB: Geostatistical Software Library ans User*s Guide. Oxford University Press, New York, N. Y.
El-Hawary, M. E. (1993). Artificial neural networks and possible applications to desalination. Desalination, 92(1-3), 125-148.
Enbutsu, I.; Baba, K.; Hara, N.; Waseda, K.; Nogita, S. (1993). Integration of multi AI paradigms for Intelligent Operation Support Systems--fuzzy rule extraction from a neural network. Water science and technology, 28(11-12), 333-342.
Flatman, G. T., Englund, E. J. and Yfantis, A. A. (1988). Geostatistical Approaches to the Design of Sampling Regimes, Princoples of Environmental Sampling, L. H. Keith, ed., American Chemistry Society, Inc., Washington, D. C., 73-84.
Fleming, N. S. (1994). Comparison of water consumption forecasting methods including artificial neural networks. National conference publication - Institution of Engineers, Australia.,15(3), 115-124.
Flood, I. and Kartam, N. (1994). Neural networks in civil engineering. I: Principles and understanding. J. Comp. in Civil Engrg, ASCE, 8(2), 131-148.
French, M. N., Krajewski, W. F., and Cuykendall, R. R. (1992). Rainfall Forecasting in Space and Time Using a Neural Network, J. of Hydrology, 137, 1-31.
Frith, A. (1996). Casting Neural Nets in Water: The applications of artificial neural networks and their use in the water industry. Process engineering, 77(1), 67-73..
Gagnon, C., Grandjean, B. P. A., and Thibault, J., (1997). Modelling of Coagulant Dosage in a Water Treatment Plant, Artificial Intelligence in Engineering, 11, 401-404.
Gagnon, C.; Grandjean, B. P. A.; Thibault, J. (1997). Modelling of coagulant dosage in a water treatment plant. Artificial intelligence in engineering, 11(4), 401-408.
Gao, C; Govind, R; Tabak, H H. (1996). Predicting Soil Sorption Coefficients of Organic Chemicals Using a Neural Network Model. Environmental toxicology and chemistry, 15(7), 1089-1098.
Garrett, J. H., Ranjitham, S. and Eheart, J. W. (1992). Application of neural network to groundwater remedaition; Chapter 11. Expert systems for civil engineers: knowledge representation, R. Allen, ed., 1259-1269.
Goh, Anthony T C; Attoh-Okine, N O. (1997). Modeling Soil Correlations Using Neural Networks. Journal of computing in civil engineering, ASCE, 11(1), 79-88.
Goh, T. C. (1995). Modeling soil correlations using meural networks. J. Comp. in Civil Engrg., ASCE, 9(4), 275-277.
Grubert, J. P. (1995). Prediction of Estuarine Instabilities with Artificial Neural Networks, J. of Computing in Civil Engineering, 9(4), 266-274.
Journel, A. G. (1988). Nonparametric Geostatistics for Risk and Additional Sampling Assessment, Princoples of Environmental Sampling, L. H. Keith, ed., American Chemistry Society, Inc., Washington, D. C., 45-72.
Juang, K. W., Lee, D. Y. (1998). Simple indicator kriging for estimating the probability of incorrectly delineating hazardous areas in a contaminated site. Environ. Sci. Technol., 32, 2487-2493.
Karunanithi, N., Grenney, W. J., Whitley, D. and Bovee, K. (1994). Neural networks for river flow prediction. J. Comp. in Civil Engrg., ASCE, 8(2), 201-220.
Kastens, Terry L; Featherstone, Allen M. (1996). Feedforward Backpropagation Neural Networks in Prediction of Farmer Risk Preferences. American journal of agricultural economics, 78(2), 400-409.
Kenneth, F. R., Bo Ling (1994). Neural networks with multiple-state neurons for nitrogen oxide (NOx) emissions modeling and advisory control, 1994 IEEE International Conference on Neural nerworks, 6, 3834-3839.
Kock, G; Serbedzija, N B, (1996). Simulation of Artificial Neural Networks. Systems analysis, modelling, simulation, 27(1), 15-24.
Kohonen, T. (1990). The self-organizing map, Proc. IEEE, 78, 1414-1480.
Lai, J. L., Lo, K. (1992). Modelling of Solute Transfer to Surface Runoff. Water Science and Technology, 26, 1851-1856.
Lee, Y. -M. (1995). Entropy/Kriging-based formulations for groundwater monitoring network design, Ph.D. dissertation, The Johns Hopkins University, Baltimore, Maryland.
Liao, Hsiu-Hua; Tim, U S. (1997). An Interactive Modeling Environment for Non-Point Source Pollution Control, Water resources bulletin, 33(3), 591-603.
Maier, Holger R; Dandy, Graeme C. (1996). The use of artificial neural networks for the prediction of water quality parameters. Water resources research, 32(4), 1013-1028.
Malkar, P., Bojnar, M. (1994). Short-term air pollution prediction on the basis of artificial neural networks, International Conference on Air Pollution-Proceedings, 1, 545-552.
Marija, B., Lesjak, M. and Mlakar, P. (1993). A neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain, Atmospheric Environment, 27B(2), 221-230.
Mukherjee, Abhijit; Deshpande, Jayant M; Rajjasekaran, S; Ramasamy, J V; Basheer, Imad A; Najjar, Yacoub M. (1997). Modeling Initial Design Process Using Artificial Neural Networks. Journal of computing in civil engineering, 11(2), 145-154.
Nefati, Hedi; Cense, Jean-Michel; Legendre, Jean-Jacques. (1996). Prediction of the Impact Sensitivity by Neural Networks. Journal of chemical information and computer sciences, 36(4), 804-815.
Niemi, H; Bulsari, A; Palosaari, S. (1995). Simulation of membrane separation by neural networks. Journal of membrane science, 102, 185-112.
Pachepsky, Ya A; Timlin, Dennis; Varallyay, G. (1996). Artificial Neural Networks to Estimate Soil Water Retention from Easily Measurable Data. Soil Science Society of America journal, 60(3), 727-737.
Parr. A. D., Richardson, C., Lane, D. D. and Baughman, D. (1987). Pore water uptake by agricultural runoff. J. of Environmental Engineering, ASCE, 113, 49-63.
Potukuchi, S., Wexler, A. (1997). Predicting Vapor Pressures Using Neural Networks, Atmospheric Environment, 31(5), 741-753.
Raman, H.; Sunilkumar, N. (1995). Multivariate modelling of water resources time series using artificial neural networks. Hydrological sciences journal, 40(2), 145-156.
Ranjithan, S., Eheart, J. W. (1993). Neural Network-based Screening for Groundwater Reclamation Under Uncertainty, Water Resources Research, 29(3), 563-574.
Richardson, C. P. and Parr, A. D. (1988). Modified Fickian model for solute uptake by runnoff. J. of Environmental Engineering, ASCE, 114, 792-809.
Roadknight, C. M., Balls, G. R., Mills, G. E. and Dominic Palmer-Brown (1997). Modeling complex environmental data, IEEE Transactions on Neural Networks, 8(4), 852-862.
Rodriguez, M. J.; Serodes, J. B.; Cote, P. A. (1997). Advanced chlorination control in drinking water systems using artificial neural networks. Water supply, 15(2), 159-171.
Rogers, L. L. and Dowla, F. U. (1994). Optimization of groundwater remediation using artificial neural network with solute transfer modeling. Water Resources Research, 30(2), 457-481.
Ruiz-Suarez, J.C., Mayora, O. A., Smith-Perez, R. and Ruiz-Suarez L. G. (1994a). Neural network-based prediction model of ozone for mexico city, International Conference on Air Pollution-proceeding, 1, 393-400.
Ruiz-Suarez, J.C., Mayora, O. A., Smith-Perez, R. and Ruiz-Suarez L. G. (1994b). Short-term forecasting of ozone by means of a bidirectional associative memory, Applications of Artificial Intelligence in Engineering, 33, 107-114.
Ruiz-Suarez, J.C., Mayora, O. A., Smith-Perez, R. and Ruiz-Suarez L. G. (1994b). Short-term ozone forecasting of ozone by artificial neural networks, Advances in Engineering Software, 23, 143-149.
Rydygier, Edward. (1997). Using Neural Networks to Solve Prediction Problems in Econometrics and Economics. Systems analysis, modelling, simulation, 27(4), 289-293..
Schaap, Marcel G; Bouten, Willem. (1996). Modeling water retention curves of sandy soils using neural networks, Water resources research, 32(10), 3033-3048..
Selvaraj, R; Deshpande, P B; Tambe, S S; Kulkarni, B D. (1995). Neural networks for the identification of MSF desalination plants. Desalination, 101(2), 185-192.
Snyder, J. K., Woolhiser, D. A., (1985). Effects of Infiltration on Chemical Transport into Overland Flow, Trans. ASAE, 28, 1450-1457.
Song, X. and Hopke, P. K. (1996). Solving the chemical mass balance problem using an artificial neural network. Environ. Sci. Technol., 30, 531-535.
Spall, J. C., Cristion, J. A. (1994). A neural networks controller for system with unmodeled dynamics with application to wastewater treatment, 1994 IEEE International Symposium on Intelligent Control, 273-278.
Tamari, S; Wosten, J H M; Ruiz-Suarez, J C. (1996). Testing an Artificial Neural Network for Predicting Soil Hydraulic Conductivity. Soil Science Society of America journal, 60(6), 1732-1744.
Teh, C I; Wong, K S; Goh, A T C; Jaritngam, S. (1997). Prediction of Pile Capacity Using Neural Networks. Journal of computing in civil engineering, 11(2), 129-137.
Trejo, L. A., Carlos, S. (1995). Improved back-propagation: Epsilon-back-propagation, From Natural to Artificial Neural Computation, 427-432.
Tsaptsinos, D., Tang, R. and Leigh, J. R. (1995). Neuroidentification of a biotechnological process: Issues and application, Neurocomputing, 9, 63-79.
Vieira, R. S., Nielsen, D. R. and Biggar, J. W., (1981). Spatial Variability of Field-measured Infiltration Rate, Soil Sci. Soc. Am. J., 45, 1040-1048.
Voutchkov, I. I.; Velev, K. D. (1997). Identification of Waste Water Treatment Plant Using Neural Networks. Lecture notes in computer science, 1226, 478-490.
Wallach, R. and Genuchten, M. T. (1990). A physically based model for predicing solute transfer from soil solution to rainfall-induced runoff water. Water Resources Research, 26, 2119-2126.
Wallach, R., Jury, W. A. and Spencer, W. F. (1988). Transfer of chemicals from soil solution to surface runoff : a diffusion-based soil model. Soil Sci. Soc. Am. J., 52, 612-618.
Wienke, D., Hopke, P. K. (1994a). Projection of prim*s minimal spanning tree into a Kohonen neural network for identification of airborne partical source by their multielement trace patterns, Analytical Chemica Acta, 91,1-18.
Wienke, D., Hopke, P. K. (1994b). Uisual neural mapping technique for locating fine airborne particles sources, Environ. Sci. Technol., 28, 1015-1022.
Wienke, D., Hopke, P. K. (1994c). Mutiple site receptor modeling with a minimal spanning tree combined with a neural network. Environ. Sci. Technol., 28, 1023-1030.
Wilcox, S. J., Hawkes, D. L. (1995). A neural network based on bicarbonate monitoring, to control anerobic digestion. Water Research, 29(6), 1465-1470.
Wittmann, C; Schmid, R D; Loffler, S; Zell, A. (1997). Application of a Neural Network for Pattern Recognition of Pesticides in Water Samples by Different Immunochemical Techniques. ACS symposium series, 657, 343-354.
Yang, M; Hubble, J; Lockett, A D; Rathbone, R R. (1996). A Neural Network Model for Prediction of Binary Adsorption Using Single Solute and Limited Binary Solute Adsorption Data. Separation science and technology, 31(9), 1259-1271.
Yeh, S. -C. (1996). Grey programming and its applications to water resources management, Ph.D. dissertation, Cornell University, New York.
Yeh, W. W. G. (1985). Reservoir Management and Operation Models: A State-of- the -Art Review, Water Resiurces Research, 21(12), 1797-1818.
Yost, R. S., Uehara, G., and Fox, R. L. (1982). Geostatistical analysis of soil chemical properties of large land area. II. Kriging. Soil Sci. Soc. Am. J., 46, 1033-1037.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.
Zhang, Q., Stanley, J. S. (1997). Forecasting Raw-water Quality Parameters for The North Saskatchewan River by Neural Network Modeling. Water Resource, 31(9), 2340-2350.
Zurada, J. M. (1992). Introduction to Artificial Neural System. Info Access Distribution Pte LTD.
余瑞芳、陳萬原、廖述良、張鎮南,1996,〝類神經網路於連續流SBR廢水處理系統即時控制之應用〞第二十一屆水處理技術研討會,pp457-464。。
吳信賢,1996,類神經網路在受體模式之應用,國立台灣大學,碩士論文。胡景堯,1996,模糊理論在水庫優養化判別上的應用,國立台灣大學,碩士論文。倪榮興,1996,污水處理廠水質管理專家系統之研究,國立雲林技術學院,碩士論文。徐明麟,1997,克利金法預測土壤重金屬污染範圍,國立台灣大學,碩士論文。高全興,1997,類神經網路於空氣品質短期預測之研究,國立雲林技術學院,碩士論文。莊愷偉,1995,以地理統計法預測土壤重金屬含量之研究,國立台灣大學,碩士論文。
黃尚雄,1996,以類神經網路預測空氣品質之研究 國立交通大學,碩士論文。溫清光、張穗蘋,水庫蓄水初期內部貢獻營養物質對水庫優養化之影響,第八屆環境規劃與管理研討會,台南,36-45。
葉怡成,1994,類神經網路-模式應用與實作儒林圖書有限公司。
盧瑞山、駱尚廉,1995,模糊綜合評判在台灣地區水庫優養化判定上之應用,第八屆環境規劃與管理研討會,台南,66-74。
盧瑞山、駱尚廉,1997,類神經網路應用於溶質傳輸至地表逕流水之研究,第十屆環境規劃與管理研討會論文集,台中,351-357。
賴俊良,1994,溶質進入地表逕流傳輸模式之研究,國立台灣大學,博士論文。闕頌廉,「應用模糊數學」,科技圖書股份有限公司,1992。
闕蓓德,1997,受重金屬污染土壤復育決策支援系統之雛形研究,國立台灣大學,博士論文。