跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 20:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張育傑
研究生(外文):Yu-Jie Chang
論文名稱:利用新式薄膜生物反應槽去除廢水中氮之研究
論文名稱(外文):Nitrogen removal by the novel membrane bioreactors in wastewater
指導教授:曾四恭曾四恭引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:146
中文關鍵詞:薄膜生物反應槽硝化脫硝生物膜同時硝化脫硝反應槽
外文關鍵詞:membrane biological reactorsnitrificationdenitrificationbiofilmsimultaneous nitrification and denitrification reactor
相關次數:
  • 被引用被引用:6
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統的硝化、脫硝二段式無迴流污泥的生物除氮系統在應用上,容易有有機碳殘留、溶氧影響與鹼度的浪費等問題,造成許多處理程序上的不便與處理空間的浪費。本論文首先嘗試建立一新式薄膜生物反應槽,稱之為薄膜添加基質生物反應槽 (membrane feeding substrate bioreactor, MFSB),該反應槽可在進行生物脫硝反應的同時維持水中殘餘有機碳濃度在一定值之下,藉由此種特性來解決生物脫硝系統可能發生的殘餘有機碳的問題。隨後,再度利用該反應槽的特性,結合相同原理的硝化反應系統,設計出單一槽體內能同時進行硝化、脫硝反應之系統,該系統成功地克服硝化、脫硝反應的溶氧與有機碳互相干擾的問題,除了可有效節省處理所需的空間之外,也可以回收鹼度,節省硝化反應所需的鹼度添加量。
在進行同時硝化脫硝系統的研發過程中,本文發現MFSB的脫硝速率並不太會受系統中溶氧的濃度高低所影響,這與一般的生物脫硝系統有相當大的不同。另一方面,研究也發現,在溶氧存在的條件下,MFSB的外層也可以同時進行硝化作用。為了描述此新式薄膜生物反應槽的特質,本文嘗試以生物分層的概念建立一數學模式來模擬不同環境下,MFSB生物膜中各物種濃度剖面的分佈情形與各項反應速率,並藉由該模擬所得的結果來解釋與預測不同溶氧、不同生物膜厚度、不同基質濃度下MFSB的處理效率。
本論文共分五章,除第一章為開宗明義的敘述研究目的之外,其餘各章均有完整主題,第二章主要在描述MFSB的研發過程與基本特性研究,第三章則是雙薄膜式同時硝化脫硝系統的研發與其基本特性之研究。第四章則對於第三章的一些推論,如:溶氧與脫硝的關係、MFSB外層的脫硝作用等做更深入的研究,並藉以驗證先前的推論。第五章則由數學模式的觀點對MFSB系統作一個總結,由MFSB的基本特性模擬,到考慮溶氧對脫硝的影響,乃至於單一薄膜同時硝化脫硝之模擬,分別的予以模擬、預測甚至驗證。
第一章 導論
1-1研究緣起*********************.1-1
1-1-1傳統生物硝化、脫硝反應之缺點*********1-1
1-1-2薄膜生物反應槽處理新技術***********1-2
1-2研究目的*********************.1-4
1-3研究架構*********************.1-4
1-4參考文獻*********************.1-5
第二章改變碳源添加方式之生物脫硝反應器研究
2-1研究緣起與文獻回顧****************2-1
2-2研究設備與方法******************2-5
2-3結果與討論********************2-7
2-3-1處理水中殘留COD**************2-7
2-3-2 MFSB的脫硝作用***************.2-10
2-3-3 MFSB批次反應的pH變化***********2-14
2-3-4 MFSB的優缺點****************2-16
2-4結論***********************2-16
2-5參考文獻*********************2-17
第三章單一槽體同時進行生物硝化脫硝反應之可行性研究
3-1研究緣起與文獻回顧****************3-1
3-2研究設備與方法******************3-5
3-3結果與討論********************3-12
3-3-1單槽硝化反應*****************3-12
3-3-2單槽脫硝反應*****************3-16
3-3-3同時硝化脫硝反應試驗*************3-16
3-4結論***********************3-27
3-4參考文獻*********************3-28
第四章 溶氧對MFSB系統生物脫硝作用之影響
4-1研究緣起與文獻回顧****************4-1
4-2研究設備與方法******************4-2
4-3結果與討論********************4-7
4-3-1 溶氧對MFSB脫硝之影響初步探討*******4-7
4-3-2 空白矽膠管纏繞的曝氣方式對MFSB脫硝之影響*.4-13
4-3-3 另一新式同時硝化脫硝反應槽*********.4-17
4-3-4 無硝化反應下,溶氧對脫硝反應的影響*****.4-32
4-4結論***********************4-39
4-5參考文獻*********************4-40
第五章 以數學模擬探討MFSB的傳輸特性與應用
5-1研究緣起與文獻回顧****************5-1
5-1-1 穩定狀態的MFSB生物膜基質擴散模式*****5-1
5-1-2非穩定狀況下之MFSB生物膜基質擴散模式***.5-5
5-2 動態模式推演*******************5-5
5-2-1基本動態模式之假設**************5-6
5-2-2基本動態模式****************5-7
5-2-3考慮溶氧對MFSB生物膜脫硝之影響******5-11
5-2-4考慮微生物增殖與死亡*************5-11
5-3模式參數的建立******************5-12
5-3-1模式參數量測設備與方法***********5-13
5-3-2模式參數的建立***************..5-16
5-4 模擬結果與驗證******************.5-19
5-4-1模擬參數試驗****************.5-19
5-4-2MFSB與PSB之基本特性模擬*********.5-27
5-4-3MFSB生物分層模式主要參數之敏感度分析***..5-34
5-4-4無硝化反應干擾下,溶氧對MFSB脫硝作用之模擬..5-40
5-4-5同時硝化脫硝反應系統之模擬*********..5-46
5-5結論***********************5-55
5-6參考文獻*********************5-56
Debus O. (1995). "Transport and Reaction of Aromatics, O2 and CO2 within a Membrane Bound Biofilm in Competition with Suspended Biomass", Wat. Sci. Tech., 31(1) , 129-141.
Debus, O. and Wanner, O. (1992). "Degradation of Xylene by a Biofilm Growing on a gas Permeable Membrane" , Wat. Sci. Tech., 26, 607-616.
Hofken, M. W. A., Huber, P., Schafer, M. and Steiner, R. (1996). "Membrane Aerators and Strring Systems for the Operation in large and Small Wastewater Treatment Plants" , Wat. Sci. Tech., 34, 329-338.
Livingston, A. G. (1993)." A novel membrane bioreactor for detoxifying industrial wastewater (I): Biodegradation of phenol in a synthetically concocted wastewater". Biotechnol. Bioeng., 41(10), 927-936.
McCleaf, P. R. and Schroeder, E. D. 1995. Denitrification using a membrane-immobilized biofilm. J. Am. Water Works Assn. 87: 77-86.
Yamamoto, K., and Win, K. M. (1991). "Tannery Wastewater treatment Using a Sequencing Batch Membrane Reactor", Wat. Sci. Tech., 23(1), 639-1648.
何俊杰,(1996). 亞硝酸型及硝酸型脫硝生物膜動力模式,國立成功大學環境工程學系博士論文
APHA, AWWA, WEF. 1995. Standard methods for the examination of water and wastewater. 19th edition. American Public Health Association. Washington, DC.
Aspegren, H., Andersson, B., Nyberg, U. and Jansen, J. la C. (1992).Model and sensor based optimization of nitrogen removal at Klagshamn wastewater treatment plant. Wat. Sci. Tech.,1315-1323.
Carley, B. N., and Mavinic, D. S. 1991. The effect of external carbon loading on nitrification and denitrification of a high-ammonia landfill leachate. J. Water Pollut. Control Fed. 63: 51-59.
Dahab, M. F. and Kalagiri, J. 1996. Nitrate removal from water using cyclically operated fixed-film bio-denitrification reactors. Wat. Sci. Tech. 34: 331-338.
Gaudy, A. F. and Gaudy, E. T. 1980. Microbiology for environmental scientists and engineers. McGraw-Hill. New York.
Hallin, A., Rothman, M. and Pell, M. 1996. Adaptation of denitrifying bacteria to acetate and methanol in activated sludge. Wat. Res. 30: 1445-1450.
Livingston, A. G. 1993. A novel membrane bioreactor for detoxifying industrial wastewater (I): Biodegradation of phenol in a synthetically concocted wastewater. Biotechnol. Bioeng. 41: 927-936.
Mateju, V., Cizinska, S., Krejci, J. and Janoch, T. 1992. Biological water denitrification - a review. Enzyme Microb. Technol. 14: 170-183.
McCleaf, P. R. and Schroeder, E. D. 1995. Denitrification using a membrane-immobilized biofilm. J. Am. Water Works Assn. 87: 77-86.
Mohseni-Bandpi, A. and Elliott, D. J. 1996. Nitrate removal from groundwater using an anoxic-aerobic rotating biological contactor. Wat. Sci. Tech. 34: 323-330.
Murphy, KL, Sutton, PM, Wilson, RW, and Jank, BE (1977). J. Water Pollut. Control Fed. 49: 549-557
Nurse, G. R. 1980. Denitrification with methanol: microbiology and biochemistry. Wat. Res. 14: 531-537.
Nyberg, U., Aspegren, H., Andersson,B., Jansen, J. la C., and Villadsen, I. S. 1992. Full-scale application of nirogen removal with methanol as carbon source. Wat. Sci. Tech. 26(5-6): 1077-1086.
Reising, A. R. and Schroeder, E. D., Member, ASCE. 1996. Denitrification incorporating microporous membranes. J. Envir. Eng. ASCE. 122: 599-604.
Skrinde, J. R. and Bhagat, S. K. 1982. Industrial waste as carbon sources in biological denitrification. J. Water Pollut. Control Fed. 54: 370-377.
Sorensen, J., Thornberg, D. E. and Nielsen, M. K. (1984) Optimization of a nitrogen-removing biological wastewater treatment plant using online measurements. Water Environmental Research, 66: 236-242.
Tam, N. F. Y. , Wong, Y. S. and Leung, G. 1992. Effect of exogenous carbon sources on removal of inorganic nutrient by the nitrification-denitrification process. Wat. Res. 26:1229-1236.
Thalasso, F., Vallecillo, A., Garcia-encina, P. and Fdz-polanco, F. 1997. The use of methane as a sole carbon source for wastewater denitrification. Wat.Res. 31: 55-60.
Timmermans, P. and Van Haute, A. 1983. Denitrification with methanol. Wat.Res. 17: 1249-1255.
Volokita, M., Abeliovich, A. and Soares, M. I. M. 1996a. Denirification of groundwater using cotton as energy source. Wat. Sci. Tech. 34: 379-385.
Volokita, M., Belkin, S.,and Abeliovich, A. 1996b. Biological denitrification of drinking water using newspaper. Wat. Res. 30: 965-971.
Wilderer, P. A., Jones, W. L. and Dau, U. 1987. Competition in denitrification systems affecting reduction rate and accumulation of nitrite. Wat. Res. 21(2): 239-245.
Bang, D. -Y., Watanabe, Y. and Noike, T., (1995). An experimental study on aerobic denitrification with polyvinyl alcohol as acarbon source in biofilms. Wat. Sci. Tech., 32(8), 235-242.
Chang, Y. J., Tseng, S. K. (1998). A new method for carbon addition in arbon addition in an anoxic denitrifn anoxic denitrification bioreacChui, P. C., Terashima, Y., Tay, J. H. and Ozaki, H. (1996). Performance of a partly aerated biofilter in the removal of nitrogen. Wat. Sci. Tech., 34(1-2), 187-194.
Cote, P., Bersillon, J., Huyard, A. and Faup, G. (1988). Bubble-free aeration using membranes: process analysis. J. WPCF., 60(11), 1986-1992.
Debus, O. (1995). Transport and reaction of aromatics, O2 and CO2 within a membrane bound biofilm in competition with suspended biomass. Wat. Sci. Tech., 31(1), 129-141.
Debus, O. and Wanner, O. (1992). Degradation of xylene by a biofilm growing on a gas-permeable membrane. Wat. Sci. Tech., 26(3-4), 607-616.
Moriyama, K., Sato, K., Harada, Y., Washiyama, K., and Okamoto, K. (1990). Renovation of an extended aeration plant for simultaneous biological removal of nitrogen and phosphorus usig oxic-anaerobic-oxic process. Wat. Sci. Tech., 22(7-8), 61-68.
Okabe, S., Oozawa, Y., Hirata, K. and Watanabe, Y. (1996). Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Wat. Res., 30(7), 1563-1572.
Rogalla, F. and Bourbigot, M. M. (1990). New developments in complete nitrogen removal with biological aerated filters. Wat. Sci. Tech., 22(1-2), 273-280.
Suzuki, Y., Miyahara, S. and Takeishi, K. (1993). Oxygen supply method using gas-permeable film for wastewater treatment. Wat. Sci. Tech., 28(7), 243-250.
Timberlake, D. L., Strand, S. E. and Williamson, K. J. (1988). Combined aerobic heterotrophic oxidation, nitrification and denitrification in a permeable-support biofilm. Wat. Res., 22(12), 1513-1517.
Villaverde, S., Garcia-Enica, P. A. and Fdz-Polanco, F. (1997). Influence of pH over nitrifying biofilm activity in submerged biofilters. Wat. Res., 31(5), 1180-1186.
Wartchow, D. (1990). Nitrification and denitrification in combined activated sludge systems. Wat. Sci. Tech., 22(7/8), 199-206.
Chang, Y. J. and Tseng, S. K. 1999. A novel double-membrane system for simultaneous nitrification and denitrification in a single tank. Letters in Appl. Microbiol. (Accepted)
Focht, D. D. and Chang, A. C. 1975. Nitrification and denitrification processes related to waste water treatment. Adv. Appl. Microbiol., 20: 473
Morel, F. M. M. (1983) Principles of aquatic chemistry. J. Wiley. New York. USA
Nelson,L. M. and Knowles, R. 1978. Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Can. J. of Microbiol., 24: 1935
Rittman, B. E. and Langeland, W. E. 1985. Simultaneous denitrification with nitrification in single-channel oxidation ditches. J. WPCF. 57: 300
Skerman, V. B. D. and MacRae, I. C. 1957. The influence of oxygen availability on the degree of nitrate reduction by Pseudomonas denitrifications. Can. J. of Microbiol., 3:356
Terai, H. and Mori, T. 1975. Studies on phosphorylation coupled with denitrification and aerobic respiration in Pseudomonas denitrificans. Bot. Mag. 38: 231
Timberlake, D. L., Strand, S. E. and Williamson, K. J. (1988). Combined aerobic heterotrophic oxidation, nitrification and denitrification in a permeable-support biofilm. Wat. Res., 22(12), 1513-1517.
Wheatland, A. B., Barnett, M. J. and Bruce, A. M. 1959. Some observations on denitrification in river and estuaries. Inst. Sewage Purif. J. Proc., pp. 149
Wilderer, P. A., Jones, W. L. and Dau, U. 1987. Competition in denitrification systems affecting reduction rate and accumulation of nitrite. Wat. Res. 21(2): 239-245.
Yang, and Alleman, (1992) Investigation of batchwise nitrite build-up by an enriched nitrification culture. Wat. Sci. Tech., 26(5-6), 997-1005
簫碧蓉,(1993),合成廢水硝酸鹽氮之脫氮及對厭氧消化之影響,國立台灣大學環境工程研究所碩士論文
Characklis, W. G. and Marshall, K. C. (1989). Biofilms. John Wiley & Sons. New York
Furumai, H. and Rittmann, B. E. (1993). Evaluation on multi-species biofilm and floc processes using a simplified aggregate model. Second International Specialized Conference on Biofilm Reactors, Paris.
Henze, M., Grady Jr, C. P. L., Gujer, W., Marais, G. v. R. and Matsuo, T. (1986). IAWQ Task Group Activated Sludge Model No. 1, IAWQ Science and Technical Reports No. 1, IAWPRC, London, England.
Janning, K. F., Harremoes, P. and Nielsen, M. (1995). Evaluation and modelling the kinetics in a full scale submerged denitrification filter. Wat. Sci. Tech., 32: 115-123.
Livingston, A. G. (1993). A novel membrane bioreactor for detoxifying industrial wastewater (I): Biodegradation of phenol in a synthetically concocted wastewater. Biotechnol. Bioeng., 41: 915-926.
la Cour jansen, J. and Harremoes, P. (1985). Removal of soluble substrate in fixed films. Wat. Sci. Tech. 17: 1-14.
Nelson,L. M. and Knowles, R. (1978). Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Can. J. of Microbiol., 24: 1935
Payne, W. J. and Riley, P. S. (1969). Suppression by nitrate of enzymatic reduction of nitric oxide. Proc. Soc. Exp. Biol. Med., 132: 258
Rittmann, B. E. and McCarty, P. L. (1980). Model of steady-state-biofilm kinetics. Biotech. Bioeng. 22: 2343-2357.
駱尚廉,(1991),環境數學,茂昌圖書公司。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top