跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/21 20:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊世斌
研究生(外文):Shi-bing Yang
論文名稱:視丘神經元T型鈣離子通道之門閥性質以及鎂離子對其之抑制作用
論文名稱(外文):Gating Properties and Mg2+ Block of T-type Calcium channels in Thalamic Neurons
指導教授:郭鐘金郭鐘金引用關係
指導教授(外文):Chun-ching Kuo
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:63
中文關鍵詞:T型鈣離子通道細胞膜箝制術門閥性質不活化作用鎂離子視丘
外文關鍵詞:T-type calcium channelpatch clampgating propertiesinactivationMagnesiumThalamus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:546
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用了全細胞膜片箝制術(whole-cell patch-clamp tech-nique),研究視丘神經元(thalamic neurons )上T型鈣離子通道(T-type calcium channel)之門閥性質(gating properties)以及鎂離子對此通道的抑制作用(Mg2+ block)。第一部份主要在探討門閥性質(gating properties)。我們發現,T型鈣離子通道之活化速率(activation rate)以及去活化速率(deactivation rate )都具有電壓依賴性(voltage dependence);但不活化速率(inactivation rate)以及由不活化態回復(recovery from inactivation)的速率會達到飽和,因此,這兩步驟為非電壓依賴性(voltage independence)。另外,我們也發現,在剛開始由不活化態回復時,會有一小段沒有電流產生的時間,稱為初始遲滯現象(initial delay),且會隨著回復電壓的過極化(hyperpolarization)而縮短。此外,無論回復電壓為-120 mV 或是-80mV ,此通道由不活化態回復的過程中,幾乎沒有電流產生。基於以上幾點,我們認為T型鈣離子通道由不活化態回復時,必須先回到一個不導電的狀態,然後才能再度開啟;這和鈉離子通道(sodium channel)的性質,在定性上十分類似,都可用鉸鏈-蓋子模型(hinged--lid model)來描述;但兩者在定量上卻有顯著的差異,尤其是在不活化以及由不活化態回復等兩個反應,在大部分之電壓下,T型鈣離子通道的速率決定步驟皆牽涉到不活化球的結合或是脫落。這暗示了此兩種通道在參與不活化反應的結構上,有顯著的差異。本論文的第二部份是探討鎂離子對T型鈣離子通道之抑制作用。我們發現,鎂離子對於位在視丘神經元上之通道抑制效果較佳,而對於位在背根神經節(dorsal root ganglion)之通道的抑制效果則不顯著。鎂離子是直接結合在通道之孔洞(pore )內以阻斷電流。其對通道結合之解離常數(dissociation constant ) 有電壓依賴性,當測試電壓為-80mV時,其解離常數約為1.3 m M ,之後每當測試電壓增加40mV時,親和力減少e 倍。由此估算,其結合的位置大約距離孔洞外口30%電距(electric distance)處。

The gating properties of T-type calcium channels and its blockade by Mg2+ in thalamic neurons were studied with the whole-cell patch-clamp technique. In the first part, we tried to find out the process of channel gating. The activation rate and deactivation rate were both voltage dependent. The inactivation rate and the rate of recovery from inactivation were saturable , so they were both voltage independent steps. We also found that recovery from inactivation started with an initial delay, a period of time without current produced. The duration of this delay was shortened with hyperpolarized membrane potential. Little current were produced during the entire process of channel recovery from inactivation, no matter the recovery voltage was -120mV or -80 mV. We proposed that recovery from inactivation of T-type calcium channel in thalamic neurons was just like sodium channel, which could be described with the hinged-lid model, but quantitatively, they are not the same, especially those steps involving inactivation. We thought that the stuctures involving inactivation were quite different between these 2 channels. Blockade of T-type calcium channels by Mg2+ in thalamic neurons was investigated then. We found that Mg2+ blocked T-type calcium channels only in thalamic neurons, but not in dorsal root ganglia. Because neither 3mM Mg2+ nor 3mM Ca2+ in 5mM Ca2+ solution could alter surface charge, Mg2+ was proposed to exert its effect by binding inside the pore to block the channel. Dissociation constant (Kd) of Mg2+ binding to the channel was 1.3mM at -80mV, and decreased e-fold per 40mV. We suggested that the Mg2+ binding site was located inside the pore around 30% electric distance from the external mouth.

圖次.................................................................................................................................iv
圖次.................................................................................................................................iv
中文摘要........................................................................................................................v
英文摘要........................................................................................................................vii
前言.................................................................................................................................1
第一部份T型鈣離子通道的門閥性質.....................................................................7
緒論...............................................................................................................................8
材料與方法..................................................................................................................13
結果...............................................................................................................................20
討論...............................................................................................................................29
第二部份鎂離子對T型鈣離子通道的抑制作用....................................................44
緒論...............................................................................................................................45
材料與方法..................................................................................................................47
結果...............................................................................................................................48
討論...............................................................................................................................51
參考文獻.........................................................................................................................57

1.Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D.Watson Molecular biology of the cell. 3rd. ed. Garland Publishing, Inc., New York. 1994.
2.Armstrong, C. M. and F. Bezanilla. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol., 70:567-90, 1977
3.Armstrong, C. M. Sodium channels and gating currents. Physiol. Rev., 61:644-83, 1981
Bean, B. P. and S. I. Mcdonough. Two for T. Neuron, 20:825-8, 1998
4.Bean, B. P. Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol., 51:367-84; 1989
5.Bezanilla, F. and C. M. Armstrong. Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol., 70:549-66, 1977
6.Bossu, J. L. and A. Feltz. Inactivation of the low-threshold transient calcium current in rat sensory neurones: evidence for a dual process. J. Physiol., 376:341-57, 1986
7.Carbone, E. and H. D. Lux. A low-voltage-activated, fully inactivating Ca2+ channel in vertebrate sensory neurons. Nature, 310:501-2, 1984
8.Carbone, E. and H. D. Lux. Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurons. J. Physiol., 386:547-70, 1987
9.Carbone, E, the late H. D. Lux, V. Carabelli, G. Aicardi and H. Zucker. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones. J. Physiol., 504(1):1-15, 1997
10.Chad, J. Inactivation of calcium channels. Comp. Biochem. Physiol., 93A, (1):95-105, 1989
11.Chen, C. and P. Hess. Mechanism of gating of T-type calcium channels. J. Gen. Physiol., 96:603-30, 1990
12.Coulter, D. A., J. R. Huguenard and D. A. Prince. Charaterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann. Neurol, 25:582-93, 1989
13.Coulter, D. A., J. R. Huguenard and D. A. Prince. Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J. Physiol., 414:587-604, 1989
14.Demo, S. D. and G. Yellen. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron, 7:743-53, 1991
15.Droogmans, G. and B. Nilius. Kinetic properties of the cardiac T-type calcium channel in the guinea-pig. J. Physiol., 419:627-50, 1989
16.Futatsugi, Y. and J. J. Riviello Jr. Mechanisms of generalized absence epilepsy. Brain and development, 20:75-9, 1998
17.Gloor, P and R. G. Fariello. Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. TINS, 11, No.2:63-8, 1988
18.Heinemann, S. H., H. Terlau, W. Stuhmer, K. Imoto and S. Numa. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature, 356:441-3 1992
19.Herrington, J. and C. Lingle. Kinetic and pharmacological properties of low voltage activated Ca2+ current in rat clonal (GH3) pituitary cells. J. Neurophysiol., 68:213-32, 1992
20.Hille, B. Ionic channels of excitable membranes.2nd. Ed.,Sunderland, MA: Sinauer, 1992
21.Hodgkin, A. L. and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117:500-44, 1952
22.Holmgren, M., M. E. Jurman and G. Yellen. N-type inactivation and the S4-S5 region of the Shaker K+ channel. J. Gen. Physiol., 108:195-206, 1996
23.Holmgren, M., P. L. Smith and G. Yellen. Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating J. Gen. Physiol., 109:527-35, 1997
24.Hoshi,T., W. N. Zagotta and R. W. Aldrich. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science, 250:533-8°A1990
25.Huguenard, J. R. Low-threshold calcium currents in central nervous system neurons. Ann. Rev. Physiol., 58:329-48, 1996
26.Jahnsen, H. and R. Llinas. Electrophysiological properties of guinea-pig thalamic neurons: an in vitro study. J. Physiol., 349:205-26, 1984a
27.Jahnsen, H. and R. Llinas. Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurons in vitro. J. Physiol., 349:227-47, 1984b
28.Jones, E. G. The Thalamus. Plenum Press, New York.°A 1985
Kostyuk, P. G., E. A. Monokanova, N. F. Pronchuk, A. N. Savchenko and A. N. Verkharatsky. Different action of ethosuximide on low- and high-threshold calcium currents in rat sensory neurons. Neuroscience, 51:755-8, 1992
29.Kuo, C. C. and P. Hess. Characterization of the high-affinity Ca2+ binding sites in the L-type Ca2+ channel pore in rat phaeochromocytoma cells. . J. Physiol., 466:657-82, 1993a
30.Kuo, C. C. and P. Hess. Block of L-type Ca2+ channel pore by external and internal Mg2+ in rat phaeochromocytoma cells. J. Physiol., 466:683-706, 1993b
31.Kuo, C. C. and B. P. Bean. Na+ channels must deactivated to recover from inactivation. Neuron, 12:819-29, 1994
32.Kuo, C. C. Deactivation retards recovery from inactivation in Shaker K+ channels. J Neurosci., 17(10):3436-44, 1997
33.Leresche, N., H. R. Parri, G. Erdemli, A. Guyon, J. P. Turner, S. R. Williams, E. Asprodini and V. Crunelli. On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J. Neurosci., 18(13):4842-53, 1998
34.Llinas, R. R. The intrinsic electrophysiological vproperties of mammalian neurons: insights into central nervous function. Science, 242:1654-63; 1988
35.Macdonald, R. L. and K. M. Kelly. Antiepileptic drug mechanisms of action. Epilepsia, 36(Suppl. 2)s2-s12, 1995
36.McCarthy, R. T. and P.E. TanPiengco. Multiple types of high-threshold calcium channels in rabbit sensory neurons: high affinity block of neuronal L-type by nimodipine. J. Neurosci,.12(6):2225-34, 1992
37.McCleskey, E. M., A. P. Fox, D. H. Feldman, L. J. Cruz, B. M. Olivera, R. W. Tsien and D. Yoshikami. £s-conotoxin :direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. USA., 84:4327-31, 1987
38.McCormick, D. A. and T. Bal. Sleep and arousal: Thalamocortical mechanisms. Annu. Rev. Neurosci., 20:185-215, 1997
39.Mcdonough, S. I., K. J. Schwartz, I. M. Mintz, L. M. Boland and B. P. Bean. Inhibition of calcium channels in rat central and peripheral neurons by \_£s-conotoxin MVIIC. J. Neurosci,. 16 (8): 2212-23, 1996
40.Meir, A. and A. C. Dolphin. Known calcium channel a1 subunits can form low threshold small conductance channels with similarities to native T-type channels. Neuron, 20:341-51, 1998
41.Miller, A. and B. Hu. A molecular model of low-voltage-activated calcium conductance. J Neurophysiol., 73(6):2349-56, 1995
42.Niggli, E. and W. J. Lederer. Voltage-independent calcium release in heart muscle. Science, 250:565-8; 1990.
43.Norwak, L., P. Bregestovski, P. Ashe, A. Herbert and A. Prochiantz. Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307:462-5,1984
44.Nowycky, M. C., A. P. Fox and R. W. Tsien. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature, 316:440-3, 1985
45.Perez-Reyes, E. et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel Nature, 391:896-900, 1998
46.Randall, A. and R. W. Tsien. Distinctive biophysical and pharmacological features of T-type calcium channels. Low-Voltage-Activated T-type Calcium channels, Proceedinds from the International Electrophysiology Meeting, Montpellier, 29-43, 1996
47.Rossier, M. F. M. M. Burnay and A. M. Capponi. Distinct function of T- and L-type calcium channels during activation of aldosterone production in adrenal glomerular cells. Low-Voltage-Activated T-type Calcium channels, Proceedinds from the International Electrophysiology Meeting, Montpellier, 176-85, 1996
48.Ruppersberg, J. P., R. Frank, O. Pongs and M. Stoker. Cloned neuronal Ik(A) channels reopen during recovery from inactivation. Nature, 353:657-60, 1991
49.Soong, T. W. ,A. Stea,C. D. Hodson, S. J. Dubel, S. R. Vincent and T. P. Snutch. Structure and functional expression of a member of the low-voltage activated calcium channel family. Science, 260:1133-6; 1993.
50.Steriade, M. and R. R. Llinas. The functional states of the thalamus and the associated neuronal interplay. Physiol. rev., 68:649-742, 1988
51.Sun, H. N., Leblanc and S. Nattel. Mechanisms of inactivation of L-type calcium channels in human atrial myocytes. Am. J. Physiol., 272:H1625-35, 1997
52.Todorovic, S. M. and C. J. Lingle. Pharmacological properties of T-type Ca= current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J Neurophysiol., 79:240-52, 1998
53.Wallach, S., J. V. Bellavia, D. L. Reizenstein and P. J. Gamponia. Tissue distribution and transport of electrolytes Mg and Ca in Hypermagnese-mia. Metabolism, 16(5):451-64, 1967
54.Wang, X., J. Rinzel and M. A. Rogawski. A model of T-type Calcium current and the low-threshold spike in thalamic neurons. J Neurophysiol. , 66(3):839-50, 1991
55.West, J. W., D. E. Patton, T. Scheuer, Y. Wang, A. L. Goldin and W. A. Catterall. A cluster of hydrophobic amino acid residues required for fast Na+ channels inactivation. Proc. Natl. Acad. Sci. USA., 89:10910-4, 1992
56.Zagotta, W. N., T. Hoshi and R. W. Aldrich. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science, 250:568-71, 1990

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top