|
1.Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D.Watson Molecular biology of the cell. 3rd. ed. Garland Publishing, Inc., New York. 1994. 2.Armstrong, C. M. and F. Bezanilla. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol., 70:567-90, 1977 3.Armstrong, C. M. Sodium channels and gating currents. Physiol. Rev., 61:644-83, 1981 Bean, B. P. and S. I. Mcdonough. Two for T. Neuron, 20:825-8, 1998 4.Bean, B. P. Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol., 51:367-84; 1989 5.Bezanilla, F. and C. M. Armstrong. Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol., 70:549-66, 1977 6.Bossu, J. L. and A. Feltz. Inactivation of the low-threshold transient calcium current in rat sensory neurones: evidence for a dual process. J. Physiol., 376:341-57, 1986 7.Carbone, E. and H. D. Lux. A low-voltage-activated, fully inactivating Ca2+ channel in vertebrate sensory neurons. Nature, 310:501-2, 1984 8.Carbone, E. and H. D. Lux. Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurons. J. Physiol., 386:547-70, 1987 9.Carbone, E, the late H. D. Lux, V. Carabelli, G. Aicardi and H. Zucker. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones. J. Physiol., 504(1):1-15, 1997 10.Chad, J. Inactivation of calcium channels. Comp. Biochem. Physiol., 93A, (1):95-105, 1989 11.Chen, C. and P. Hess. Mechanism of gating of T-type calcium channels. J. Gen. Physiol., 96:603-30, 1990 12.Coulter, D. A., J. R. Huguenard and D. A. Prince. Charaterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann. Neurol, 25:582-93, 1989 13.Coulter, D. A., J. R. Huguenard and D. A. Prince. Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J. Physiol., 414:587-604, 1989 14.Demo, S. D. and G. Yellen. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron, 7:743-53, 1991 15.Droogmans, G. and B. Nilius. Kinetic properties of the cardiac T-type calcium channel in the guinea-pig. J. Physiol., 419:627-50, 1989 16.Futatsugi, Y. and J. J. Riviello Jr. Mechanisms of generalized absence epilepsy. Brain and development, 20:75-9, 1998 17.Gloor, P and R. G. Fariello. Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. TINS, 11, No.2:63-8, 1988 18.Heinemann, S. H., H. Terlau, W. Stuhmer, K. Imoto and S. Numa. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature, 356:441-3 1992 19.Herrington, J. and C. Lingle. Kinetic and pharmacological properties of low voltage activated Ca2+ current in rat clonal (GH3) pituitary cells. J. Neurophysiol., 68:213-32, 1992 20.Hille, B. Ionic channels of excitable membranes.2nd. Ed.,Sunderland, MA: Sinauer, 1992 21.Hodgkin, A. L. and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117:500-44, 1952 22.Holmgren, M., M. E. Jurman and G. Yellen. N-type inactivation and the S4-S5 region of the Shaker K+ channel. J. Gen. Physiol., 108:195-206, 1996 23.Holmgren, M., P. L. Smith and G. Yellen. Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating J. Gen. Physiol., 109:527-35, 1997 24.Hoshi,T., W. N. Zagotta and R. W. Aldrich. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science, 250:533-8°A1990 25.Huguenard, J. R. Low-threshold calcium currents in central nervous system neurons. Ann. Rev. Physiol., 58:329-48, 1996 26.Jahnsen, H. and R. Llinas. Electrophysiological properties of guinea-pig thalamic neurons: an in vitro study. J. Physiol., 349:205-26, 1984a 27.Jahnsen, H. and R. Llinas. Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurons in vitro. J. Physiol., 349:227-47, 1984b 28.Jones, E. G. The Thalamus. Plenum Press, New York.°A 1985 Kostyuk, P. G., E. A. Monokanova, N. F. Pronchuk, A. N. Savchenko and A. N. Verkharatsky. Different action of ethosuximide on low- and high-threshold calcium currents in rat sensory neurons. Neuroscience, 51:755-8, 1992 29.Kuo, C. C. and P. Hess. Characterization of the high-affinity Ca2+ binding sites in the L-type Ca2+ channel pore in rat phaeochromocytoma cells. . J. Physiol., 466:657-82, 1993a 30.Kuo, C. C. and P. Hess. Block of L-type Ca2+ channel pore by external and internal Mg2+ in rat phaeochromocytoma cells. J. Physiol., 466:683-706, 1993b 31.Kuo, C. C. and B. P. Bean. Na+ channels must deactivated to recover from inactivation. Neuron, 12:819-29, 1994 32.Kuo, C. C. Deactivation retards recovery from inactivation in Shaker K+ channels. J Neurosci., 17(10):3436-44, 1997 33.Leresche, N., H. R. Parri, G. Erdemli, A. Guyon, J. P. Turner, S. R. Williams, E. Asprodini and V. Crunelli. On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J. Neurosci., 18(13):4842-53, 1998 34.Llinas, R. R. The intrinsic electrophysiological vproperties of mammalian neurons: insights into central nervous function. Science, 242:1654-63; 1988 35.Macdonald, R. L. and K. M. Kelly. Antiepileptic drug mechanisms of action. Epilepsia, 36(Suppl. 2)s2-s12, 1995 36.McCarthy, R. T. and P.E. TanPiengco. Multiple types of high-threshold calcium channels in rabbit sensory neurons: high affinity block of neuronal L-type by nimodipine. J. Neurosci,.12(6):2225-34, 1992 37.McCleskey, E. M., A. P. Fox, D. H. Feldman, L. J. Cruz, B. M. Olivera, R. W. Tsien and D. Yoshikami. £s-conotoxin :direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. USA., 84:4327-31, 1987 38.McCormick, D. A. and T. Bal. Sleep and arousal: Thalamocortical mechanisms. Annu. Rev. Neurosci., 20:185-215, 1997 39.Mcdonough, S. I., K. J. Schwartz, I. M. Mintz, L. M. Boland and B. P. Bean. Inhibition of calcium channels in rat central and peripheral neurons by \_£s-conotoxin MVIIC. J. Neurosci,. 16 (8): 2212-23, 1996 40.Meir, A. and A. C. Dolphin. Known calcium channel a1 subunits can form low threshold small conductance channels with similarities to native T-type channels. Neuron, 20:341-51, 1998 41.Miller, A. and B. Hu. A molecular model of low-voltage-activated calcium conductance. J Neurophysiol., 73(6):2349-56, 1995 42.Niggli, E. and W. J. Lederer. Voltage-independent calcium release in heart muscle. Science, 250:565-8; 1990. 43.Norwak, L., P. Bregestovski, P. Ashe, A. Herbert and A. Prochiantz. Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307:462-5,1984 44.Nowycky, M. C., A. P. Fox and R. W. Tsien. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature, 316:440-3, 1985 45.Perez-Reyes, E. et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel Nature, 391:896-900, 1998 46.Randall, A. and R. W. Tsien. Distinctive biophysical and pharmacological features of T-type calcium channels. Low-Voltage-Activated T-type Calcium channels, Proceedinds from the International Electrophysiology Meeting, Montpellier, 29-43, 1996 47.Rossier, M. F. M. M. Burnay and A. M. Capponi. Distinct function of T- and L-type calcium channels during activation of aldosterone production in adrenal glomerular cells. Low-Voltage-Activated T-type Calcium channels, Proceedinds from the International Electrophysiology Meeting, Montpellier, 176-85, 1996 48.Ruppersberg, J. P., R. Frank, O. Pongs and M. Stoker. Cloned neuronal Ik(A) channels reopen during recovery from inactivation. Nature, 353:657-60, 1991 49.Soong, T. W. ,A. Stea,C. D. Hodson, S. J. Dubel, S. R. Vincent and T. P. Snutch. Structure and functional expression of a member of the low-voltage activated calcium channel family. Science, 260:1133-6; 1993. 50.Steriade, M. and R. R. Llinas. The functional states of the thalamus and the associated neuronal interplay. Physiol. rev., 68:649-742, 1988 51.Sun, H. N., Leblanc and S. Nattel. Mechanisms of inactivation of L-type calcium channels in human atrial myocytes. Am. J. Physiol., 272:H1625-35, 1997 52.Todorovic, S. M. and C. J. Lingle. Pharmacological properties of T-type Ca= current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J Neurophysiol., 79:240-52, 1998 53.Wallach, S., J. V. Bellavia, D. L. Reizenstein and P. J. Gamponia. Tissue distribution and transport of electrolytes Mg and Ca in Hypermagnese-mia. Metabolism, 16(5):451-64, 1967 54.Wang, X., J. Rinzel and M. A. Rogawski. A model of T-type Calcium current and the low-threshold spike in thalamic neurons. J Neurophysiol. , 66(3):839-50, 1991 55.West, J. W., D. E. Patton, T. Scheuer, Y. Wang, A. L. Goldin and W. A. Catterall. A cluster of hydrophobic amino acid residues required for fast Na+ channels inactivation. Proc. Natl. Acad. Sci. USA., 89:10910-4, 1992 56.Zagotta, W. N., T. Hoshi and R. W. Aldrich. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science, 250:568-71, 1990
|