跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 12:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林吳宣煒
研究生(外文):Shiuan-Woei Lin Wu
論文名稱:大鼠肝臟微粒體之細胞色素P450參與土震素A代謝之研究
論文名稱(外文):Study on metabolism of territrem A by cytochrome P450 from liver microsomes of Wistar rat
指導教授:彭福佐
指導教授(外文):Fu-Chuo Peng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:94
中文關鍵詞:細胞色素P450土振素A
外文關鍵詞:cytochrome P450territrem Atestosterone hydroxylationtestosterone 6b-hydroxylaseCYP3A1/2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:420
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
土震素A ( territrem A; TRA ) 為Aspergillus terreus 23-1菌株經米培養,以氯仿萃取分離的震顫性黴菌毒素之一。本實驗室先前的研究指出,土震A在成熟六週大的老鼠以phenobarbital前處理的肝臟微粒體中有MA1與MA2兩種代謝物產生。因此,王 (1995) 認為細胞色素P450同功CYP2C11、2B1/2和3A1/2參與土震素A的代謝。然而,其真正的代謝過程與何種P450酵素參與仍然尚未釐清。本研究之目的在於確認大鼠肝臟微粒體中參與土震素A代謝的P450酵素與其代謝途徑。
為了證實這個問題,我們以互相比較的研究方式來探討土震素A與testosterone在相同組別的大鼠肝臟微粒體中之代謝,而testosterone在P450的代謝方式則在過去的文獻中已被探討。所使用的方法有:(1) 肝臟微粒體為兩週大 (雄性) 與六週大 (雄性與雌性) 的Wistar大鼠及經由phenobarbital (PB) 或dexamethasone (DEX) 處理 (2) 代謝受質為土震A、MA1與testosterone,經由與肝臟微粒體及NADPH的反應後以HPLC定量其代謝產物 (3) 以化學抑制劑cimetidine、orphenadrine與SKF-525A及免疫抑制以CYP2C11、2B1/2和3A1/2的抗血清來研究其代謝受質抑制作用。
研究結果指出 (1) 無論前處理PB或DEX的雌性或雄性大鼠其肝臟微粒體中均能夠增加其testosterone 6b-, 16a-, 16b-與2a-hydroxylase的活性,如此推測CYP2C11、2B1/2和3A1/2酵素活性可被PB或DEX誘導及增強 (2) 兩週大的雄性Wistar大鼠肝臟微粒體中只有testosterone 6b-hydroxylase活性表現 (3) 由免疫染色分析結果可知經PB與DEX處理的雌性或雄性大鼠其肝臟微粒體中CYP2B和3A蛋白都有增加 (4) 在以土震A與MA1為受質的肝臟微粒體代謝研究發現,在雄性大鼠前處理PB與DEX其代謝物MA1、MI與MA2都增加,於雌性大鼠則只有MA1產生 (5) 由化學抑制劑cimetidine、orphenadrine與SKF-525A及免疫抑制血清CYP2C11、2B1/2和3A1/2 antiserums的研究分析,在成熟的雄性大鼠肝臟微粒體中testosterone 6b-, 16a-, 16b-與2a-hydroxylase的活性都受到抑制,但於testosterone 6b-hydroxylase活性受抑制時其土震素A之代謝物MA1、MI與MA2才受抑制。
綜合以上研究結果,我們證實 (1) 雄性大鼠肝臟微粒體土震素A的代謝首先經水解作用 (hydroxylation) 產生MA1,而後經氧化作用 (oxidation) 產生MI,最後再經脫醛作用 (decarbonylation) 產生MA2。而雌性大鼠肝臟微粒體土震素A的代謝僅能行水解作用產生MA1,而無法再經氧化及脫醛作用產生MI及MA2 (2) 而由兩週與六週大的雄性大鼠之化學與免疫抑制研究推論,CYP3A1/2為主要參與土震素A代謝P450酵素。由此推斷,於雄性Wistar成熟大鼠肝臟微粒體土震素A的代謝過程中,CYP3A2佔了95%以上的角色,而CYP3A1只參與在土震素A至MA1的代謝步驟。

Abstract
Territrem A (TRA) is a tremogenic mycotoxin isolated from the chloroform extracts of the sub-merged rice culture of Aspergillus terreus 23-1. The previous studies from our laboratory have indicated that two metabolites designated as MA1 and MA2 were found from TRA by liver microsomes of phenobarbital-pretreated adult male of 6 weeks old Wistar rats. It was then suggested by Wang (1995) that cytochrome P450 isoforms such as CYP2C11, 2B1/2 and 3A1/2 may be involved in TRA metabolism. However, its real patterns of metabolism and of which kind of P450 involved are still not clarified. The aim of the present investigation is to elucidate the P450 isoforms and define its metabolic pathway involved in the metabolism of TRA by rat liver microsomes.
In order to solve the problems, the comparative study of metabolizing TRA and testosterone were carried out with the same rat liver microsomes, since the metabolic pathway and P450 involved in testosterone in rat liver microsomes were well documented in the past literature. The methods used in the present investigation are following: (1) Liver microsomal fractions used, are obtained from 2 weeks (male) and 6 weeks (both adult male and female) Wistar rats. (2) Substrates used are TRA, MA1 and testosterone. Their metabolites are quantified by HPLC after incubation of the reaction mixture including the above described substrates, microsomes and NADPH. (3) For inhibition study, chemicals such as cimetidine, orphenadrine and SKF-525A, and polyclonal antiserums for CYP2B1, CYP3A2 and CYP2C11 are used.
In these studies, we have observed the following results. (1) Pre-treatment of phenobarbital (PB) and dexamethasone (DEX) of both adult male and female Wistar rats could enhance the activities of testosterone 6b-, 16a-, 16b- and 2a-hydroxylase in their liver microsomes, that is interpreted as the increase of the activities of CYP3A1/2, 2B1/2 and 2C11. (2) By immunoblotting method, it is confirmed that the proteins of CYP3A and CYP2B increase in liver microsomes of both adult male and female rats after PB and DEX treatment. However, increase of CYP2C11 protein was only observed in liver microsomes of PB-pretreated adult male rats but not in those of adult female rats. (3) With cimetidine, orphenadrine and SKF-525A and polyclonal antiserums for CYP2B1, CYP3A2 and CYP2C11, the all activities of testosterone 6b-, 16a-, 16b- and 2a-hydroxylase in liver microsomes of adult male Wistar rats are inhibited. (4) In microsomes of 2 weeks old male Wistar rats, only testosterone 6b-hydroxylase is observed. (5) When TRA is used as the only substrate in the experiments with liver microsomes of PB and DEX pre-treated adult Wistar rats, it is shown that the products MA1, MA2 and the new compound designated as MI, increase in male ones but only MA1 produced in female ones. However, when MA1 is the substrate in the same experimental conditions, the products MI and MA2 increased in male ones but they are not found in female ones. (6) With the analysis of LC-MS of MI fraction, the molecule weight of MI is 524. Moreover, when MI used as the substrate, it is shown that MA2 is produced. Therefore, we conclude that MI is the intermediate product between MA1 and MA2. (7) When TRA is used as the substrate with liver microsomes of 2 weeks old male Wistar rats, MA1, MI and MA2 are formed as the products. (8) With cimetidine and polyclonal antiserums, the metabolism of TRA and MA1 in 2 weeks old male rat liver microsomes, are completely inhibited.
Therefore, it is concluded that (1) TRA transforms to MA1 via hydroxylation, then to MI via oxidation and finally to MA2 via decarbonylation in the adult male rat liver microsomes. However, in adult female rat liver microsomes, TRA transforms only to the stage of MA1 via hydroxylation without further metabolism. (2) From chemical and immuno inhibition study, we propose that CYP3A1/2 may be the major P450 isoenzyme of TRA metabolism in liver microsomes of 2 weeks and adult Wistar male rats, since that both of their testosterone 6b-hydroxylase activity and TRA and MA1 metabolism are also inhibited. We also suggest that CYP3A2 has major role (probably up to 95%) in metabolic pathway from TRA to MA2 as described above in male adult Wistar rats and CYP3A1 may be involved in the metabolic pathway from TRA to MA1.

目 錄
中文摘要…………………………………………………….. I
英文摘要………………………………………………….....III
縮寫表………………………………………………………..V
第一章 誘導劑誘發大鼠肝臟微粒體之細胞色素P450同功
…………………………………………………….1
第二章 土震素A及其代謝產物之分析…………………...19
第三章 土震素A在大鼠肝臟微粒體中的代謝反應及其酵素動力學之研究………………………………………30
第四章 不同細胞色素P450同功參與土震素A代謝之研究……………………………………………………39
第五章 總結…………………………………………………53
第六章 參考文獻……………………………………………58
圖表…………………………………………………………..66

參考文獻
Adnan, A. E., Renee, J. K., Allen, R. L., Lawrence, H. L., and Jean, C. P.
(1998) Species- and sex-related differences in metabolism of
trichloroethylene to yield chloral and trichloroethanol in mouse, rat, and
human liver microsomes. Drug Metab. Dispos. 26: 779-785.
Alexander, W. W., Dene E. R., Paul, E. T., and Wayne, L. (1983) Regio-
and stereoselective metabolism of two C19 steroids by five highly
purified and reconstituted rat hepatic cytochrome P450 isozymes. J.
Biol.Chem. 258: 8839-8847.
Alvares, A. P., and Mannering, G.J. (1970) Two-substrate kinetics of
drug-metabolizing enzyme systems of hepatic microsomes. Mol.
Pharmacol. 6: 206-212.
Aoyama, T., Yamano, S., Guzelian, P. S., Gelboin, H. V., and Gonzalez,
F.J. (1990) Five of 12 forms of vaccinia virus-expressed human hepatic
cytochrome p450 metabolically activate aflatoxin B1. Proc. Natl. Acad.
Sci. U.S.A. 87: 4790.
Arlotto M.P., Sonderfan, A.J., Klaassen, C. D., and Parkinson, A. (1987)
Studies on the pregnelone- 16α-carbonitrile inducible form of rat liver
microsomal P450 and UDP-glucuronyl transferase. Biochem.
Pharmacol. 36: 3859-3866.
Ates, Z., Suzen, S., Buyukbingol, E., Can, E. B., and Iscan, M. (1997)
Effects of a benzimidazole compound on monooxygenase activities.
Farmaco. 52(11): 703-706.
Axel, M., Dagmar, S., Peter, H. R., Walter, G. H., Guy, G. C., and Patrick,
N. (1997) Expression and inducibility of cytochrome P450
3A9(CYP3A9) and other members of the CYP3A subfamily in Rat liver.
Arch. Biochem. Biophys. 337: 62-68.
Axelrod, J. (1995) The enzymatic demethylation of ephedrine. J.
Pharmacol. Exp. Ther. 114: 430-438.
Boelsterli, U. A., Lanzotti, A., Goldlin, C., and Oertle, M. (1992)
Identification of cytochrome P-450IIB1 as a cocaine-bioactivating
isoform in rat hepatic microsomes and in cultured rat hepatocytes. Drug
Metab. Dispos. 20: 96.
Brodie, B., Axelrod, J., Cooper, J. R., Gaudette, L., LaDu, B. N., Mitoma,
C., and Udefriend, S. (1955) Detoxication of drugs and other foreign
compounds by liver microsomes. Science 121: 603-604.
Chandravathi, V., and Craig, K. S. (1994) Evidence that the
biotransformation of dapsone and monoacetyldapsone to their respective
hydroxylamine metabolites in rat liver microsomes is mediated by
cytochrome P450 2C6/2C11 and 3A1. The American Society for
Pharmacol. Exp. Ther. 22:572-577.
Chang, T., Levine, M., and Bellward, G. D. (1992) Selective inhibition of
rat hepatic microsomal cytochrome P-450. II. Effect of the in vitro
administration of cimetidine. J. Pharmacol. Exp. Ther. 260: 1450-1455.
Chiou, C. M. (1998) Study on territrem: Biotransformation of territrem
by rat S9 fraction. Master dissertation, Institute of Biochemistry,College
of Medicine, National Taiwan University.
Correia, M. A. (1991) Cytochrome P450 turnover. Methods in
Enzymol. 206: 315-325.
Estabrook, R. W. (1996) The remarkable P450s: a historical overview of
these versatile hemeprotein catalysts. FASEB J. 10: 202-205.
Funae, Y., and Imaoka, S. (1993) Cytochrome P450 in rodents, in
Cytochrome P450 Schenkman, J. B. and Griem, H. (Eds), Berlin:
Springer-Verlag, 221-238.
Ghosal, A., Sadrieh, N., Reik, L., Levin, W., and Thomas P. E. (1996)
Induction of the male-specific cytochrome P450 3A2 in female rats by
phenytoin. Arch. Biochem. Biophys. 332 (1): 153-162.
Gibson, G. G., and Skett, P. (1994) Introduction to Drug Metabolism, 2nd
edition, Chapman & Hall, London.
Gonzalez, F. J., Song, B. J., and Hardwick, J. P. (1986) Pregnenolone
16α-carbonitrile-inducible P-450 gene family: gene conversion and
differential regulation. Mol. Cell. Biol. 6: 2969-2976.
Gordon, F. R., Ishita, M., and Michael, M. (1989) Inhibition of oxidative
drug metabolism by orphenadrine: in vitro and in vivo evidence for
isozyme-specific complexation of cytochrome P-450 and inhibition
kinetics. Mol. Pharmacol. 35: 736-743.
Halpert, J. R. (1995) Structural basis of selective cytochrome P450
inhibition. Ann. Rev. Pharmacol. Toxicol. 35: 29-53.
Jan, F. K., Karl, L. L., Astrid, H., and Roland, Seifert. (1996) Activation
of GTP formation and High-affinity GTP hydrolysis by mastoparan in
various cell membranes. Biochem. Pharmacol. 51: 217-223.
Kato, R., and Yamazoe, Y. (1992) Sex-specific cytochrome P450 as a
cause of sex- and species-related differences in drug toxicity. Toxicol.
Lett. 64/65: 661-667.
Khadija, D., Alan, B. R., and Robert, J. E. (1995) Distribution and
induction of CYP3A1 and CYP3A2 in rat liver and extrahepatic tissues.
Biochem. Pharmacol. 50: 2047-2056.
Kiyoshi, N., Frank, J. G., Yasushi, Y., and Ryuichi, K. (1990) Purification
and characterization of four catalytically active testosterone 6β-
hydroxylase P-450s from rat liver microsomes: comparison of a novel
form with three structurally and functionally related forms. J. Biochem.
107: 718-725.
Ling, K. H., Yang, C. K., and Peng, F. T. (1979) Territrems, tremorgenic
mycotoxins of Aspergillus Terreus. Appl. Enviro. Microbiol. 37: 355-
357.
Ling, K. H., Yang, C. K., and Kau, C. A. (1982) Solvent system for
improved isolation and separation of territrem A and B. Appl. Enviro.
Microbiol.44: 806-863.
Ling, K. H., Liou, H. H., Fu, T. C., Tsai, M. C., and Lin, M. Y. (1986)
Mechanism of action of territrem, tremogenic mycotoxin isolated from
Aspergillus Terreus. IUPAC 6th International symposium on mycotoxin
and phycotoxin in 1985, pp.387-398.
Ling, K. H., Tsai, S. D., and Liou, H. H. (1988) Disposition of
radiolabelled territrem B in mice. J. Biomed. Lab. Sci. (ROC) 1: 28-34.
Ling, K. H., Chiou, C. M., and Tseng, Y. L. (1991) Biotransformation of
territrems by S9 fraction from rat liver. Drug Metab. Dispos. 19: 587-
595.
Lin, R. L. (1997) Study on sexual difference of biotransformation of
territrem A by liver microsome from Wistar rat. Master dissertation,
Institute of Toxicology. National Taiwan University.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951)
Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:
265-275.
Margarida, B. T., Teresa, M. P., and Maria, C. L. (1992) Effect of
dexamethasone and phenobarbital on run-on transcription rate and
CYP3A mRNA concentration in rat liver: changes during development.
Arch. Biochem. Biophys. 298: 715-725.
Meehan, R. R., Forrester, L.M., Stevenson, K., Hastie, N. D., Buchmann,
A., Kunz, H. W., and Wolf, C. R. (1988) Regulation of phenobarbital-
inducible P450s in mouse and rat liver following dexamethasone
administration and hypophysectomy. J. Biochem. 254: 789.
Michele, C. L. and Colin, R. J. (1995) Phenobarbital induction of
CYP2B1, CYP2B2, and CYP3A1 in rat liver: genetic differences in a
common regulatory mechanism. Arch. Biochem. Biophys. 321(2): 467-
476.
Murray, M. (1992) P450 enzymes: Inhibition mechanisms, genetic
regulation and effects of liver disease. Clin. Pharmaco. Con. 23: 132-
146.
Nelson, D. R. (1993) Cytochrome P450 alignment and nomenclature.
Internet location: Welch Laboratory, Johns Hopkins University,
Maryland, USA.
Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P.,
Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus,
I. C., Gotoh, O., Okuda, K., and Nebert, D. W. (1993) The P450
superfamily: update on new sequences, gene mapping, accession
numbers, early trivial names of enzymes and nomenclature. DNA and
Cell Biology 12: 1-51.
Nelson, D. R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen,
R.,Waxman, D. J., Waterman, M. R., Gotoh, O., Coon, M. J., Estabrook,
R. W., Gunsalus, I. C., and Nebert, D. W. (1996) P450 superfamily:
update on new sequences, gene mapping, accession numbers and
nomenclature. Pharmacogenetics 6: 1-42.
Omura, T., Ishimura, Y., and Fujii-Kuriyama, Y. (Eds), (1993)
Cytochrome P-450 (2nd edition) Tokyo: Kodansha.
Omura, T., and Sato, R. (1964) The carbon monoxide-binding pigment of
liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem.
239: 2370-2378.
Parkinson, A. (1996) Biotransformation of Xenobiotics. In Casarett &
Doull,s Toxicology: the basic science of poison. (5th edition), pp. 113-
186, McGraw-Hillpress, Inc., New York, U.S.A.
Peter, H. R. and Axel, M. (1996) Metabolite complex formation
of orphenadrine with cytochrome P450. Biochem. Pharmacol. 52:
73-84.
Phillips, A. H., and Langdon, R. G. (1962) Hepatic triphosphopyridine
nucleotide-cytochrome c reductase: isolation, characterization and
kinetic studies. J. Biol. Chem. 237: 2652-2660.
Robertson, I. G. C., Zeiger, E., and Goldstein, J. A. (1983) Specificity of
rat liver cytochrome P-450 isozymes in the mutagenic activation of
benzo[a]pyrene, aromatic amines and aflatoxin B1. Carcinogenesis 4:
93.
Schenkman, J. B. and Griem, H. (Eds), 1993, Cytochrome P450,
Heidelberg: Springer-Verlag,
Shen, B. C. (1992) Biotransformation of territrem by male rat liver
microsome. Master dissertation, Institute of Biochemistry, National
Taiwan University.
Shimada, M., Nagata, K., Murayama, N., Yamazoe, Y., and Kato, R.
(1989) Role of growth hormone in modulating the constitutive and
phenobarbital-induced levels of two P-4506β(testosterone 6β-
hydroxylase) mRNAs in rat livers. J. Biochem. 106: 1030.
Simmons, D. L., McQuiddy, P., and Kasper, C. B. (1987) Induction of the
hepatic mixed-function oxidase system by synthetic glucocorticoids.
Transcriptional and post-transcriptional regulation. J. Biol. Chem. 262:
326-332.
Stephen, F. T., Himanshu, P., Elam, S., and Cecil, H. R. (1991) Lanosterol
14α-demethylase (P45014DM): effects of P45014DM inhibitors on sterol
biosynthesis downstream of lanosterol. J. Lipid Res. 32: 893-902.
Susumu, I., Yoshitake, T., and Yoshihiko, F. (1988) Constitutive
testosterone 6β-hydroxylase in rat liver. J. Biochem.104: 481-487.
Testa, B., and Jenner, P. (1981) Inhibitors of cytochrome P-450s and their
mechanism of action. Drug Metab. Rev. 12: 1-117.
Testa, B. (1990) Mechanisms of inhibition of xenobiotic-metabolizing
enzymes. Xenobiotica 20: 1129-1137.
Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer
of protein from polyacrylamide gels to nitrocellulose sheets: procedure
and some applications. Proc. Natl. Acad. Sci. U.S.A. 76: 4350-4354.
Tseng, Y. L. (1990) I. Biotransformation of territrems in rat, II.The
stability of territrems. Master dissertation, Institute of Biochemistry,
National Taiwan University.
Valerji, K., Natalia, P., and Lorenzo, R. (1991) Regulation of the
expression of the sex-specific isoforms of cytochrome P450 in rat liver.
Eur. J. Biochem. 195: 585-591.
Wang, B. L. (1995) Biotransformation of territrem A by liver microsome
of male rat. Master dissertation, Institute of Toxicology. National
Taiwan University.
Waxman, D. J. (1984) Rat hepatic cytochrome P-450 isozyme 2c:
identification as a male-specific, developmentally induced steroid 16α-
hydroxylase and comparison to a female-specific cytochrome P-450
isozyme. J. Biol. Chem. 259: 15481-15490.
Waxman, D. J., and Azaroff, L. (1992) Phenobarbital induction of
cytochrome P-450 gene expression. Biochem. J. 281: 577-592.
Waxman, D. J., Dannan, G. A., and Guengerich, F. P. (1985) Regulation
of rat hepatic cytochrome P450: age-dependent expression, hormonal
imprinting, and xenobiotic inducibility of sex-specific isozymes.
Biochemistry 24: 4409-4417.
Waxman, D. J., Ko, A., and Walsh, C. (1983) Regioselectivity and
stereoselectivity of androgen hydroxylations catalyzed by cytochrome
P-450 isozymes purified from phenobarbital-induced rat liver. J. Biol.
Chem. 258: 11937-11947.
Yasushi, Y., Norie, M., Miki, S., Kiyomi, Y., Kiyoshi, N., Susumu, I.,
Yoshihiko, F., and Ryuichi, K. (1988) A sex-specific form of
cytochrome P-450 catalyzing propoxycoumarin O-depropylation and its
identity with testosterone 6β-hydroxlase in untreated rat livers:
reconstitution of the activity with microsomal lipids. J. Biochem. 104:
758-790.
Zeng, Z., Andrew, N.W., and Halley, B.A. (1997) Identification of
cytochrome P4503A as the major enzyme sub-family responsible for the
metabolism of 22,23-dihydro-13-O-[(2-methoxyethoxy)methyl]-
avermectin B1 aglycone by rat liver microsomes. Xenobiotica
27 (10): 985-994.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top