跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王詔絹
研究生(外文):WANG CHAO CHUAN
論文名稱:胎鼠腦內小神經膠細胞於正常發育及糖性皮質固醇處理後抗原表現及凝集素受體之變化
論文名稱(外文):The Changes of Lectin-receptor and Antigen Expression of Microglia in Fetal Rat Brain under Normal Development and Glucocorticoids Treatment
指導教授:溫振源溫振源引用關係謝正勇謝正勇引用關係
指導教授(外文):Wen C.Y.Shieh J.Y.
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:解剖學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:154
中文關鍵詞:小神經膠細胞糖性皮質固醇抗原表現凝集素受體胎鼠腦
外文關鍵詞:microgliadexamethasoneantigen expressionlectin-receptorfetal rat brain
相關次數:
  • 被引用被引用:1
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
(1) 胎腦內小神經膠細胞於正常發育時之免疫表型 本實驗利用幾種相關單株抗體以觀察胎腦隨年齡增長時 (從懷孕第10天到20天),小神經膠細胞內各種抗原的表現情形;所使用的單株抗體有認識主要組織相容性抗原 I (MHC class I, OX-18) 和抗原II (MHC class II, OX-6),白血球一般抗原(OX-1),CD4接受器(OX-35),第3型補體受器(OX-42),還有未知其功能的巨噬細胞抗原(ED1和ED2)。所有測試的抗原中,最早在胚胎第12天時,只有標誌ED1和ED2的小神經膠細胞出現。第14天,除了帶MHC class I抗原 (OX-18) 的細胞未偵測到外,其餘所有測的抗原均在變形性小神經膠細胞內被偵測到,而被標誌的細胞主要分布在發育中的白質。從第16天起,在紋狀體外側的大腦間質區 (the intermediate zone lateral to the striatum, IZS) 的小神經膠細胞中偵測到所有測試抗原。此後,有些標誌細胞伸出細胞突起 (例如:在胚胎第20天ED1, ED2, OX-6 和 OX-18標誌的細胞),有些表現較弱的免疫活性 (例如:在胚胎第18天OX-6, OX-18, OX-35和OX-42標誌的細胞)。我們推測鼠胎腦內小神經膠細胞有免疫異質表型,而這種表現可能是因應發育時腦內局部環境的特殊需要所致。(2) 以凝集素標誌法探討胎腦內小神經膠細胞於正常發育時之超微結構本實驗利用可標誌小神經膠細胞膜上乳醣基(-D-galactose)的凝集素-GSA I-B4 (Griffonia simplicifolia B4 isolectin) 織化學法,並經由光學及電子顯微鏡來觀察鼠腦內小神經膠細胞在胚胎發育早期(胚胎第11天~15天)的分化情形。GSA I-B4標誌細胞早在胚胎第11天時便出現在神經上皮內。從胚胎第11天到15天,這些被GSA I-B4標誌細胞的數目相當少。GSA I-B4標誌細胞的分布由靠近神經上皮基底膜處向腦室逐漸減少。根據細胞的核質比以及細胞質內超微構造的特徵,在胚胎第11、12天的胎腦內,顯示有二種型式的GSA I-B4標誌細胞,即原始型/胚胎型巨噬細胞和吞噬細胞二種。隨著胎腦的發育,在胚胎第14天開始出現具有高度液泡狀的典型變形性小神經膠細胞,屬GSA I-B4標誌的第三型細胞。此時,仍可觀察到先前出現的原始型/胚胎型巨噬細胞及吞噬細胞。本研究顯示並沒有中間型細胞介於這三種不同型式的GSA I-B4標誌細胞。而小神經膠細胞在胚胎發育早期呈現多種形態的特性推測可能與其功能的多樣異質性有關。(3) 胎腦內小神經膠細胞經糖性皮質固醇處理後之免疫表型及增生情形在本實驗中,將懷孕第10天的母鼠經腹腔注射糖性皮質固醇 (dexamethasone, DEX),觀察從胚胎第16天到第20天時,胎腦內小神經膠細胞其免疫分子 (ED1 和 OX-42) 受DEX的影響情形,並與對照組作比較。結果發現: 這些免疫標誌的小神經膠細胞其外形及分布情形並不因藥物的處理而有所改變,但其數量上卻隨著所使用抗體的不同,而有不同的變化情形;因此計量紋狀體外側大腦間質區 (the intermediate zone lateral to the striatum, IZS) 的小神經膠細胞,結果顯示,受ED1和 OX-42標誌之小神經膠細胞密度,在胚胎第16天時與對照組比較,無明顯差異;在胚胎第18天時,細胞密度與對照組的比較都有明顯下降的趨勢,然而,OX-42標誌細胞密度在第20天卻有明顯增加的現象。另外,利用對小神經膠細胞膜上α-D-galactosy glycoprotein具專一性的凝集素-GSA I-B4來觀察小神經膠細胞在鼠腦內經糖性皮質固醇處理後的情形。結果發現在胚胎第16天時,GSA I-B4標誌的小神經膠細胞密度與同年齡對照組比較有意義的增加,至胚胎第18天時與同年齡對照組比較是減少,之後則無明顯差異。而利用雙重染色 (BrdU &OX-42 or GSA I-B4) 的方式來標誌增生中的小神經膠細胞,更發現經由DEX處理後,在胚胎第16天雙重標誌的小神經膠細胞有明顯增加的現象,因此推測這個現象可能是小神經膠細胞分裂增殖的結果。至於胚胎第18天時,經糖性皮質固醇處理後,OX-42和ED1標誌小神經膠細胞密度表現戲劇性的減少,推測可能是糖性皮質固醇的抑制作用使得抗原表現調降所致。總括言之,我們認為經由母體處理DEX,對胎腦不同發育階段內小神經膠細胞表面抗原的呈現會有不同的影響程度。這項訊息或許可以提供經由母體處理糖性皮質固醇以治療出生前胎兒特殊疾病之利用。(4) 以凝集素標誌法探討糖性皮質固醇對胎腦內小神經膠細胞超微結構之影響在本實驗中,將糖性皮質固醇(dexamethasone, DEX) 經由腹腔注射入懷孕第10天的母鼠,觀察從胚胎第16天到第20天時,胎腦中IZS處小神經膠細胞的超微結構及其凝集素標誌受DEX影響的情形,並與對照組作比較。本研究結果發現,經此藥物處理後,在胚胎第16天的標誌細胞大部分含有許多大型液泡及較多的高爾基氏體。這些大而圓的液泡有時佔據整個細胞質。從胚胎第18天起,在對照組與藥物處理組,GSA I-B4標誌細胞的細胞質內大都含有大量的大型液泡或者是溶菌體。不同的是,在DEX處理組內具發達液泡的標誌細胞,其細胞質內的粗糙內質網具長而多條平行排列在細胞核旁。有些具溶菌體堆積的標誌細胞,其溶菌體有GSA I-B4的標誌情形出現。而無論藥物的處理與否,標誌細胞內的高爾基氏體則從未有GSA I-B4的標誌。本研究顯示糖性皮質固醇對小神經膠細胞的超微結構及其凝集素的標誌呈現多方面的影響程度。因此我們推測這些小神經膠細胞因處在各種不同的活化及分化發育階段而造成其受DEX的影響有不同的反應或程度。(5) 胎鼠腦內小神經膠細胞在正常發育及糖性皮質固醇處理後與細胞凋亡的關係本章利用組織化學及免疫細胞化學技術,以探討胎腦內小神經膠細胞在正常發育及糖性皮質固醇處理下,與凋亡細胞的關係,其中以TUNEL(Terminal transferase mediated dUTP Nick End-Labelling)方法標誌凋亡細胞,凝集素GSA I-B4來標誌小神經膠細胞。實驗結果發現,在正常發育的胎腦內,凋亡細胞主要聚集在大腦背側的正中線處,並向頭吻兩端伸展;而小神經膠細胞也分布在凋亡細胞聚集處,同時有些小神經膠細胞含有凋亡體。至於凋亡的小神經膠細胞在正常發育的胎腦內則幾乎沒有觀察到。另外,在紋狀體外側的大腦間質區(IZS, intermediate zone lateral to the striatum),自胚胎第16天起有小神經膠細胞的聚集,然而此處只有零星的凋亡細胞散佈,同時幾乎偵測不到含有凋亡體的小神經膠細胞或凋亡的小神經膠細胞。在懷孕第10天的母鼠體內注射糖性皮質固醇(dexamethasone, DEX)後,凋亡細胞在各個發育階段的分布及數目大致上並沒有顯著變化,然而小神經膠細胞族群數量在各個發育階段有不一致的變化;在胚胎第16天的IZS及第20天的海馬連合(hippocampal commissure)及緊鄰胼胝體上方的扣帶回皮質(cingulate cortex immediately dorsal to the corpus callosum)有顯著增加,在胚胎第18天的IZS有顯著減少。至於小神經膠細胞的凋亡及含有凋亡體的分布情形及數量並沒有明顯改變。基於以上的實驗結果,推測隨著胚胎的發育或經藥物處理時,小神經膠細胞族群的變化不是利用規劃性細胞死亡的方式來調控的。同時,無論藥物處理與否,胚胎發育時期的小神經膠細胞可能不負責清除大部分的凋亡細胞。另外,糖性皮質固醇對胚胎發育時期腦內各種細胞的作用可能有一致性作用----促進這些細胞分化而不誘導其凋亡。

(1) The present study examined the expression of different antigens in amoeboid microglial cells (AMC) in fetal rat brain extending from 12 to 20 days postconception (E10 to E20) using a panel of monoclonal antibodies against the major histocompatibility complex (MHC) class I (OX-18) and class II (OX-6) antigens, leukocyte common antigen (OX-1), CD4 receptor (OX-35), complement type 3 receptor (OX-42) or macrophage antigens of unknown function (ED1 and ED2). Of the above-mentioned antigens, ED1 and ED2-labelled AMC were first observed in the neuroepithelia as early as embryonic day 12 (E12); other antigens were not detected at this stage. At E14, except for MHC class I antigen, all other antigens were expressed by AMC distributed preponderantly in the developing white matter. At E16, AMC in the intermediate zone lateral to the striatum were endowed with all of the above-mentioned antigens including MHC class I. At E18, the immunoreactivities of AMC stained with OX-6, OX-18, OX-35 and OX-42 antibodies were noticeably reduced when compared with those ones at E16. At E20, amoeboid microglial cells exhibited full complement of antigen expression similar to those cells at E16; some of the labelled cells emitted a variable number of cytoplasmic processes. It is suggested that the successive and differential expression of various macrophage related antigens on AMC in fetal brain is related to the specific requirement of the local environment in different stages of developmental brain.(2) The development of microglia in embryonic rat brain extending from 11 to 15 days of gestation (E11~E15) was studied, based on light and electron microscopic identifications of microglia using peroxidase-coupled isolectin B4 of Griffonia simplicifolia (GSA I-B4) against alpha-D-galactose groups on the cell membrane. GSA I-B4-positive cells were observed in the neuroepithelia as early as embryonic day 11 (E11). Relatively low densities of GSA I-B4 positive cells resided in the brain from E11 to E15. The density of GSA I-B4 positive cells within the wall of the neuroepithelia was the greatest along the neuroepithelial basement membrane and declined progressively toward the ventricular lumen. At E11 and E12, ultrastructural examinations showed that there were two morphological types of GSA I-B4 positive cells, primitive/fetal macrophage and phagocyte, based on the differences of nucleus/cytoplasm ratio and the configuration of their cytoplasma. With aging, the typical amoeboid microglia with highly vacuolated structures were observed as early as E14. At the same time, GSA I-B4 positive cells mentioned above still coincided with the typical amoeboid microglia. The present study showed that there were no transitional forms appeared between the three types of GSA I-B4 positive cells. These results of the multiple forms of microglia existing in the early embryo were suggested to be related to the heterogeneity of microglial function.(3) The present study examined the effect of maternal administration of dexamethasone (DEX) on amoeboid microglial cells (AMC) in fetal rats extending from 16 to 20 days postconception (E16 to E20). After an intraperitoneal injection of DEX into pregnant rats at E10, the external morphology and distribution of immunolabelled AMC as detected with OX-42 and ED1 monoclonal antibodies remained unaltered when compared with those of the controls. The major effect of dexamethasone was on microglial cell population. Thus, the numbers of immunolabelled AMC with OX-42 or ED1 in the intermediate zone lateral to the striatum (IZS) of DEX-treated fetuses which remained relatively unchanged at E16 were significantly reduced at E18. However, OX-42 labelled cells showed an unexpected increase in number at E20 following DEX treatment. Microglial response to DEX was also analyzed in sections stained with the isolectin, GSA I-B4, which specifically binds alpha-D-galactosyl glycoproteins on microglia. The number of GSA I-B4 labelled AMC was significantly increased at E16, declined at E18 and remained constant thereafter in DEX-treated rats when compared with that of the controls. A major finding after DEX treatment was the wider occurrence of AMC double labelled with anti-BrdU antibody and GSA I-B4 or OX-42 at E16 compared with those in the controls suggesting that the initial increase of GSA I-B4 labelled AMC may be attributed to their proliferation. The drastic reduction of OX-42 and ED1 positive microglial cells notably at E18 may be due to the downregulation of surface antigens as a result of possible suppressive action of dexamethasone. On the basis of present findings, it is concluded that the antigenic expressions of fetal AMC may be modulated by DEX administrated maternally. Such however appeared to be extremely selective as reflected by the varied expression for certain immune molecules at different stages of brain development. This information would be useful in potential use of glucocorticoids in prenatal therapy of brain pathology via maternal circulation.(4) The present study described the effect of maternal administration of dexamethasone (DEX) on amoeboid microglial cells (AMC) in fetal rat brain extending from 16 to 20 days postconception (E16 to E20). After an intraperitoneal injection of DEX into pregnant rat at E10, the ultrastructure and lectin-labelling pattern of AMC in the intermediate zone lateral to the striatum (IZS) were examined. At E16, AMC in DEX-treated rats showed numerous large vacuoles and more Golgi complex. Large vacuoles in the cytoplasm of AMC were round in shape and occupied massive volume of the cytoplasm after DEX treatment. From E18 onward, the cytoplasm of most lectin-labelled AMC in saline-treated rats contained well-developed vacuoles or lysosomal granules as those in DEX-treated ones. Highly vacuolated AMC in DEX-treated brain were also characterized in the long strand of rER arranged in parallel and close to their nucleus. Some AMC with abundant lysosomes in DEX treated rats exhibited heavy staining with isolectin at their lysosomes. No lectin labelling at the Glogi apparatus of AMC was found both in DEX-treated and control brains.Present results demonstrated a multiple effect of DEX on the ultrastructure and lectin-labelled pattern of AMC. It was speculated that the differential responses of AMC to DEX may be dependent on the phase of cell activation and/or differentiation at different stages of brain development as previous findings (Wang et al., 1998).(5) Using histochemical and immunocytochemical techniques, we were to determine the possible involvement of apoptosis in regulating the microglial distribution in fetal rat brain after dexamethasone (DEX) treatment. Apoptotic cells were detected by using terminal transferase mediated dUTP nick end-labelling (TUNEL) method while microglial cells were labelled with the isolectin Griffonia simplicifolia (GSA I-B4). In normal fetal brain, apoptotic cells occurred mainly in the dorsal midline along its rostro-caudal axis of the brain, where lectin-labelled microglia were also distributed; some of them had contained several apoptotic bodies. Only rare apoptotic microglia was detected in these areas. On the other hand, there were a few apoptotic cells in the intermediate zone lateral to the striatum (IZS) where lectin-labelled microglia were common from embryonic day 16 (E16) onwards. At the same time, microglia engulfing apoptotic bodies or apoptotic microglia were almost not detected in the IZS. After an intraperitoneal injection of DEX into pregnant rats at E10, there was no noticeable change in the distribution of apoptotic cells at all stages examined but an accumulation of lectin-labelled microglia was observed in IZS at E16, in hippocampal commissure (Hip Com) and cingulate cortex immediately dorsal to the corpus callosum (CCDCC) at E20 and a decrease in IZS at E18. The number and distribution of apoptotic microglia or microglia engulfing apoptotic cells were also not affected in areas where apoptotic cells consistently existed. On the basis of present findings, it was suggested that the variation of microglial population with developmental growth may not be regulated by a form of programmed cell death as those in DEX-treated fetuses, and the microglia may not be the major scavenger of apoptotic cells in the normal fetal brains or those of DEX-treated ones. On the other hand, the effect of DEX on microglia or other neural cells in fetal brain may be related consistently to enhance the cell differentiation rather than induce cell apoptosis.

目錄第一章、緒論 ------------------------------------ 1 I. 引言 ------------------------------------------2 II. 小神經膠細胞的起源 --------------------------- 3 A. 軟腦膜起源 --------------------------- 3 B. 周皮細胞起源 --------------------------- 3 C. 神經外胚層起源 --------------------------- 4 D. 大單核白血球起源 --------------------------- 4 E. 其他 --------------------------- 5III. 小神經膠細胞的種類 ------------------------------ 6 A. 分枝性小神經膠細胞 --------------------------- 6 B. 變形性小神經膠細胞 --------------------------- 8 C. 活化的小神經膠細胞 --------------------------- 10 D. 再活化的小神經膠細胞 ------------------------- 11 IV. 小神經膠細胞的細胞生物學 ------------------------ 12 A. 小神經膠細胞的細胞化學標誌情形 --------------- 12 B. 小神經膠細胞的抗原呈現 ----------------------- 15 C. 吞噬作用 ------------------------------------- 16 V. 小神經膠細胞的演化與替換 ------------------------ 16 A. 變形性小神經膠細胞分化成分枝性小神經膠細胞的轉變 ---------------------- 16 B. 分枝性小神經膠細胞轉變成活化的腦巨噬細胞------ 17 C. 小神經膠細胞的增殖 --------------------------- 18 D. 小神經膠細胞的就地死亡 ----------------------- 19 VI. 小神經膠細胞的神經生物學 ------------------------ 20 A. 小神經膠細胞和中樞神經系統的發育 ------------ 20 B. 小神經膠細胞和中樞神經系統的再生 ------------ 21VII. 研究目的 ---------------------------------------- 22 VIII. 參考文獻 --------------------------------------- 23第二章、胎腦內小神經膠細胞於正常發育時之免疫表型摘要 ------------------------------------------------- 38[英文摘要] ------------------------------------------- 39 I.背景 --------------------------------------------- 40 II.研究方法及進行步驟 ------------------------------- 42III.結果 --------------------------------------------- 44 IV.討論 --------------------------------------------- 45 V.參考文獻 ----------------------------------------- 48 VI.圖表及圖片說明 ----------------------------------- 51第三章、以凝集素標誌法探討胎鼠腦內小神經膠細胞於正常發育 之超微結構 -------------------------------------- 58摘要 ------------------------------------------------- 59[英文摘要] ------------------------------------------- 60 I.背景 --------------------------------------------- 61 II.研究方法及進行步驟 ------------------------------- 63III.結果 --------------------------------------------- 65 IV.討論 --------------------------------------------- 68 V.參考文獻 ----------------------------------------- 70 VI.圖表及圖片說明 ----------------------------------- 72第四章、胎腦內小神經膠細胞經糖性皮質固醇處理後之免疫表型 及增生情形 --------------------------------------- 83摘要 ------------------------------------------------- 84[英文摘要] ------------------------------------------- 85 I.背景 --------------------------------------------- 86 II.研究方法及進行步驟 ------------------------------- 87III.結果 --------------------------------------------- 91 IV.討論 --------------------------------------------- 93 V.參考文獻 ----------------------------------------- 97 VI.圖表及圖片說明 ----------------------------------- 100第五章、以凝集素標誌法探討糖性皮質固醇對胎腦內小神經膠細胞 超微結構之影響 ----------------------------------- 107摘要 ------------------------------------------------- 108[英文摘要] ------------------------------------------- 109 I.背景 --------------------------------------------- 110 II.研究方法及進行步驟 ------------------------------- 111III.結果 --------------------------------------------- 112 IV.討論 --------------------------------------------- 113 V.參考文獻 ----------------------------------------- 116 VI.圖表及圖片說明 ----------------------------------- 119第六章、胎鼠腦內小神經膠細胞在正常發育及糖性皮質固醇處理後 與細胞凋亡的關係 --------------------------------- 127摘要 ------------------------------------------------- 128[英文摘要] ------------------------------------------- 129 I.背景 -------------------------------------------- 130 II.研究方法及進行步驟 ------------------------------- 132III.結果 --------------------------------------------- 134 IV.討論 --------------------------------------------- 137 V.參考文獻 ----------------------------------------- 141 VI.圖表及圖片說明 ----------------------------------- 145第七章、綜合結論 ------------------------------------- 153

Ⅷ、參考文獻Aguayo A.J. (1985) Synaptic Plasticity. (C.W. Cotman, ed.) Guilford: New York. pp. 457-484.Akiyama H., Itagaki S. &McGeer P.L. (1988) Major histocompatibility complex antigen expression on rat microglia following epidural kainic acid lesions. J. Neurosci. Res. 20, 147-157.Allen P.D., Bustin S.A. &Newland A.C. (1993) The role of apoptosis (programmed cell death) in haemopoiesis and the immune system. Blood Rev. 7, 63-73.Angelov D.N., Gunkel A., Stennert E. &Neiss W.F. (1995) Phagocytic microglia during delayed neuronal loss in the facial nucleus of the rat. Time course of the neuronofugal migration of brain macrophages. Glia 13, 113-129.Ashwell K. (1989) The development of microglia in the albino rabbit retina. J. Comp. Neurol. 287, 286-301.Ashwell K. (1990) Microglia and cell death in the developing mouse cerebellum. Dev.Brain Res. 55, 219-230.Ashwell K. (1991) The distribution of microglia and cell death in the fetal rat forebrain. Dev. Brain Res. 58, 1-12.Banati R.B. &Graeber M.B. (1994) Surveillance, intervention and cytotoxicity: is there a protective role of microlgia? Dev. Neurosci. 16, 114-127.Banati R.B., Gehrmann J., Schubert P. &Kreutzberg G.W. (1993a) Cytotoxicity of microglia. Glia 7, 111-118.Banati R.B., Gehrmann J., Czech C., Monning U., Jones L.L., Konig G., Eyreuther K. &Kreutzberg G.W. (1993b) Early and rapid de novo synthesis of Alzheimer beta A4-amyolid precursor protein (APP) in activated microglia. Glia 9, 199-210.Baron M. &Gallego A. (1972) The relation of the microglia with the pericytes in the cat cerebral cortex. Z. Zellforsch. Mikrosk. Anat. 128, 42-57.Baron van Evercorren A., Leprince P., Rogister B., Lefebvre P.P., Delree P., Selak I. &Moonen G. (1987) Plasminogen activators in developing peripheral nervous system. Cellular origin and mitogenic effect. Dev. Brain Res. 36, 101-108.Barres B.A., Koroshetz W.J., Swartz K.J., Chun L.L. &Corey D.P. (1990) Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron 4, 507-524.Barron K.D. (1995) The microglial cell: A historical review. J. Neurol. Sci. 134 (suppl.), 57-68.Barron K.D., Marciano F.F., Amundson R. &Mankes R. (1990) Perineuronal glial responses after axotomy of central and peripheral axons. A comparison. Brain Res. 523, 219-229.Bauer J., Sminia T., Wouterlood F.G. &Dijkstra C.D. (1994) Phagocytic activity of macrophages and microglial cells during acute and chronic relapsing experimental autoimmune encephalomyelitis. J. Neurosci. Res. 38, 365-375.Bauer J., Huitinga I., Zhao W., Lassmann H., Hickey W.F. &Dijkstra C.D. (1995) The role of macrophages, perivascular cells and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15, 437-446.Blakemore W.F. (1969) The ultrastructure of the subependymal plate in the rat. J. Anat. 104, 423-433.Blakemore W.F. (1975) The ultrastructure of normal and reactive microglia. Acta Neuropathol. Suppl. 6, 273-278.Booth P.L. &Thomas W.E. (1991) Evidence for motility and pinocytosis in ramified microglia in tissue culture. Brain Res. 548, 163-171.Borner M.M., Myers C.E., Sartor O., Sei Y., Toko T., Terpel J.B. &Schneider E. (1995) Drug-induced apoptosis is not necessarily dependent on macromolecular synthesis or proliferation in the p53-negative human prostate cancer cell line PC-3. Cancer Res. 55, 2122-2128.Boya J. (1975) Contribution to the ultrastructural study of microglia in the cerebral cortex. Acta Anat. 92, 364-375.Boya J. (1976) An ultrastructural study of the relationship between pericytes and cerebral macrophages. Acta Anat. 95, 598-608.Boya J., Calvo J.L. &Carbonell A. L. (1987a) Appearance of microglial cells in the postnatal rat retina. Arch. Histol. Jap. 50, 223-228.Boya J., Calvo J. &Prado A. (1979) The origin of microglial cells. J. Anat. 129, 177-186.Boya J., Calvo J.L., Carbonell A.L. &Borregon A. (1991) A lectin histochemistry study on the development of rat microglial cells. J. Anat. 175, 229-236.Boya J., Carbonell A. L., Calvo J.L. &Borreon A. (1987b) Ultrastrucutre study on the origin of rat microglial cells. Acta Anat. 130, 329-335.Brichova H. (1972) Contribution to the question of the existence and function of microglial cells in the rat central nervous system. Folia Morphol. 20, 85-87.Brierley J.B. &Brown A.W. (1982) The origin of lipid phagocytes in the central nervous system: I. The intrinsic microglia. J. Comp. Neurol. 211, 397-406.Caggiano A.O. &Brunjes P.C. (1993) Microglia and the developing olfactory bulb. Neuroscience 52, 717-724.Cajal Ramon y S. (1909) Histologie du systeme nerveux de l’homme et des vertebres. pp. 230-252. Paris.Cajal Ramon y S. (1911) Histologie du systeme neveaux de l’homme et des vertebres. A. Maloine, Paris.Cajal Ramon y S. (1928) Degeneration and regeneration of the nervous system (May R. M., trans) London: University Press.Cammermeyer J. (1970) The life history of the microglial cell: A light microscopic study. Neurosci. Res. 3, 43-129.Chamak B. &Mallat M. (1991) Fibronectin and laminin regulate the in vitro differentiation of microglial cells. Neuroscience. 43, 513-527.Choi B.H. (1981) Hematogenous cells in the central nervous system of developing human embryos and fetuses. J. Comp. Neurol. 196, 683-694.Colton C.A. &Gilbert D.L. (1987) Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 223, 284-288.Colton C.A., Abel C., Patchett J., Keri J. &Yao J. (1992) Lectin staining of cultured CNS microglia. J. Histochem. Cytochem. 40, 505-512.Cunningham T.J. (1982) Naturally occurring death and its regulation by developing neural pathways. Int. Rev. Cytol. 74, 163-186.Damoiseaux J.G.M.C., Dopp E.A., Calame W., Chao D., Macpherson G.G. &Dijkstra C.D. (1994) Rat macrophage lysosomal membrane antigen recognized by monoclonal antibody ED1. Immunology 83, 140-147.Das G.D. (1976a) Resting and reactive macrophages in the developing cerebellum. An experimental ultrastructural study. Virchows Arch. B 20, 287-298.Das G.D. (1976b) Gitter cells and their relationship to macrophages in the developing cerebellum. An electron microscopic study. Virchows Arch. B 20, 299-305.Davis E.J., Foster T.D. &Thomas W.E. (1994) Cellular forms and functions of brain microglia. Brain Res. Bull. 34, 73-38.De Groot C.J.A., Dijkstra C.D. &Sminia T. (1988) Discrimination between different types of neuroglial cells in rat central nervous system using combined immuno- and enzyme-histochemical methods. Immunobiology 178, 177-190.Del Rio-Hortega P. (1919) El “tercer elemento” de los centros nerviosus. Bol. Soc. Esp. Biol. 9, 69-120.Del Rio-Hortega P. (1932) Microglia. In Cytology and cellular pathology of the nervous system, vol. II (W. G. Penfield, ed.), New York: Paul B Hoeber. pp. 483-534.Dickson D.W. &Mattiace L.A. (1989) Astrocytes and microglia in human brain share an epitope recognized by a B-lymphocyte-specific monoclonal antibody (LN-1). Am. Pathol. 135, 135-147.Dijkstra C.D., Dopp E.A., Joling P. &Kraal G. (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophages subpopulations in the rat recognized by monoclonal antibodies ED1, ED2, and ED3. Immunology 54, 589-599.Dougherty T.F. (1944) Studies on the cytogenesis of microglia and their relation to cells of the reticulo-endothelial system. Am. J. Anat. 74, 61-95.Dunninng H. C. &Furth J. (1935) Studies in the relation between microglia, histiocytes and monocytes. Am. J. Pathol. 11, 859-919.Ellison J.A. &de Vellis J. (1995) Amoeboid microglia expressing GD3 ganglioside are concentrated in regions of oligodendrogenesis during development of the rat corpus callosum. Glia 14, 123-132.Fabian I. &Aronson M. (1978) Monoamine oxidase activity of macrophages at rest and during phagocytosis. Biochem. Pharmacol. 27, 1909-1913.Fedoroff S., Zhai R. &Novak J.P. (1997) Microglia and astorglia have a common progenitor cell. J. Neurosci. Res. 50, 477-486.Ferrer I. &Sarmiento J. (1980) Nascent microglia in the developing brain. Acta Neuropathol. 50, 61-67.Ferrer I., Bernet E., Soriano E., Del Rio T. &Fonseca M. (1990) Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. Neuroscience 39, 451-458.Field E.J. (1955) Observations on the development of microglia together with a note on the influence of cortisone. J. Anat. 89, 201-208.Finsen B.R., Sorensen T., Castellano B., Pedersen E.B. &Zimmer J. (1991) Leukocyte infiltration and glial reactions in xenografits of mouse brain tissue undergoing rejection in the adult rat brain. A light and electron microscopical immunocytochemical study. J. Neuroimmunol. 32, 159-183.Flaris N.A., Densmore T.L., Molleston M.C. &Hickey W.F. (1993) Characterization of microglia and macrophages in the central nervous system of rats: definition of the differential expression of molecules using standard and novel monoclonal antibodies in normal CNS and in four models of parenchymal reaction. Glia 7, 34-40.Frei K. &Fontana A. (1989) Immunoregulatory of astrocytes and microglial cells within the central nervous system. In: Neuroimmune networks: physiology and diseases. (F.J. Goetzl and N.H. Spector, eds.) Alan R. Liss, New York. pp. 127-136.Frei K., Bodmer S., Siepl C. &Fontana A. (1987) Astrocyte derived interleukin 3 as a growth factor for microglial cells and peritoneal macrophages. Lymph. Res. 6, U87.Frei K., Siepl C., Groscurth P., Bodmer S., Schwerdel C. &Fontana A. (1987) Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells. Eur. J. Immunol. 17, 1271-1278.Frei K., Malipiero U.V., Leist T.P., Zinkermagel R.M., Cchwab M.E. &Fontana A. (1989) On the cellular source and function of interleukin 6 produced in the central nervous sytem in viral disease. Eur. J. Immunol. 19, 689-694.Frei K., Nohava K., Malipiero U.V., Schwerdel C. &Fontana A. (1992) Production of macrophage colony-stimulating factor by astrocytes and brain macrophages. J. Neuroimmmunol. 40, 189-195.Fujita S. &Kitamura T. (1975) Origin of brain macrophages and the nature of so-called microglia. Acta Neuropathol. Suppl. 6, 281-289.Fujita S. &Kitamura T. (1976) Origin of brain macrophages and the nature of the microglia. In: Progress in Neuropathology (H.M. Zimmerman, ed.) Vol. III. Grune &Stratton, New York. pp. 1-50.Fujita S., Tsuchihashi Y. &Kitamura T. (1980) Origin, morphology and function of the microglia. In: Glial and Neuronal Cell Biology (E.A. Vidrio &S. Fedroff, eds.), Alan R. Liss, New York. pp, 141-169.Gavriele Y., Sherman Y. &Ben-Sasson S.A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493-501.Gehrmann J. &Banati R.B. (1995) Microglial turnover in the injured CNS: activated microglia undergo delayed DNA fragmentation following peripheral nerve injury. J. Neuropathol. Exp. Neurol. 54, 680-8.Gehrmann J., Monaco S. &Kreutzberg G.W. (1991a) Spinal cord microglial cells and DRG satellite cells rapidly respond to transection of the rat sciatic nerve. Restor. Neurol. Neurosci. 2, 181-198.Gehrmann J., Schoen S.W. &Kreutzberg G.W. (1991b) Lesion of the rat entorhinal cortex leads to a rapid microglial reaction in the dentate gyrus. A light and electron microscopical study. Acta Neuropathol. 82, 442-455.Gehrmann J., Bonnekoh P., Miyazawa T., Hossmann K.A. &Kreutzberg G.W. (1992a) Immunocytochemical study of an early microglial activation in ischemia. J. Cerebr. Blood Flow Meta. 12, 257-269.Gehrmann J., Gold R., Linington C., Lannes-Vieira J., Wekerle H. &Kreutzberg G.W. (1992b) Spinal cord microglia in experimental allergic neuritis: evidence for fast and remote activation. Lab. Invest. 67, 100-113.Gehrmann J., Gold R., Linington C., Lannes-Vieira J., Wekerle H. &Kreutzberg G.W. (1993a) Microglial involvement in autoimmune inflammation of the central and peripheral nervous system. Glia 7, 50-59.Gehrmann J., Mies G., Bonnekoh P., Banati R.B., Iijima T., Kreutzberg G.W. &Hossmann K.A. (1993b) Microglial reaction in the rat cerebral cortex induced by cortical spreading depression. Brain Pathol. 3, 11-18.Gehrmann J., Banati R.B., Wiessner C., Hossmann K.A. &Kreutzberg G.W. (1995) Reactive microglia in cerebral ischemia: an early mediator of tissue damage? Neuropathol. Appl. Neurobiol. 21, 277-289.Giulian D. &Baker T.J. (1986) Characterization of amoeboid microglia isolated from the developing mammalian brain. J. Neurosci. 6, 2163-2178.Giulian D. &Ingeman J.E. (1988) Colony-stimulating factors as promotors of ameboid microglia. J. Neurosci. 8, 4707-4717.Giulian D. &Lachman L.B. (1985) Interleukin-1 stimulation of astroglial proliferation after brain surgery. Science 228, 497-499.Giulian D., Iwanij V. &Stuckenbrok H. (1985) The response of optic tract glia during regeneration of the goldfish visual system. I. Biosynthetic activity within different glial popultions after transection of retinal ganglion cell axons. Brain Res. 339, 87-96.Giulian D., Baker T.J., Shin L.N. &Lachman L.B. (1986) Interleukin-1 of the central nervous system is produced by ameboid microglia. J. Exp. Med. 164, 594-604.Giulian D., Chen J., Ingeman J.E., George J.K. &Naponen M. (1989) The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J. Neurosci. 9, 4416-4429.Giulian D., Johnson B., Krebs J.F., George J.K. &Tapscott M. (1991) Microglial mitogens are produced in the developing and injured mammalian brain. J. Cell Biol. 112, 323-333.Glenn J.A. Booth P.L. &Thomas W.E. (1991) Pinocytotic activity in ramified microglia. Neurosci. Lett. 123, 27-31.Glenn J.A., Ward S.A., Stone C.R., Booth P.L. &Thomas W.E. (1992) Characterisation of ramified microglial cells: detailed morphology, morphological plasticity and proliferative capability. J. Anat. 180, 109-118.Goodbrand I.A. &Gaze R.M. (1991) Microglia in tadpoles of Xenopus laevis: Normal distribution and the response to optic nerve injury. Anat. Embryol. 184, 71-82.Graeber M.B. (1993) Microglia, macrophages and the blood-brain barrier. Clin. Neuropathol. 12, 296-297.Graeber M.B. &Streit W.J. (1990) Microglia: immune network in the CNS. Brain Pathol. 1, 2-5.Graeber M.B., Streit W.K. &Kreutzberg G.W. (1988a) Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J. Neurosci. Res. 21, 8-24.Graeber M.B., Tetzlaff W., Streit W.J. &Kreutzberg G.W. (1988b) Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy. Neurosci. Lett. 85, 317-321.Graeber M.B., Streit W.J. &Kreutzberg G.W. (1989) Formation of microglia-derived brain macrophages is blocked by adriamycin. Acta Neuropathol. 78, 348-358.Graeber M.B., Streit W.J., Kiefer R., Schoen S.W. &Kreutzberg G.W. (1990) New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. J. Neuroimmunol. 27, 121-132.Hamilton S.P. &Rome L.H. (1994) Stimulation of in vitro myelin synthesis by microglia. Glia 11, 326-335.Hankin M.H., Schneider B.F. &Silvere J. (1988) Death of subcallosal sling is correlated with formation of the cavum septum pellucidum. J. Comp. Neurol. 272, 191-202.Hao C., Guibert L.J. &Fedoroff S. (1990) Production of colony-stimulating factor 1 (CSF-1) by mouse astroglia in vitro. J. Neurosci. Res. 27, 314-323.Hayes G.M., Woodroofe M.N. &Cuzner M.L. (1987) Microglia are the major cell type expressing MHC class II in human white matter. J. Neurol. Sci. 80, 25-37.Hickey W.F., Vass K. &Lassmann H. (1992) Bone marrow derived elements in the central nervous system: An immunohistochemical and ultrastructural survey of rat chimeras. J. Neuropathol. Exp. Neurol. 51, 246-256.Hildebrand C. (1971) Ultrastructural and light-microscopic studies of the developing feline spinal cord white matter. II. Cell death and myelin sheaths disintergration in the early postnatal period. Acta Physiol. Scand. Suppl. 364, 109-144.Htain W.W., Leong S.K. &Ling E.A. (1994) A comparative Mac-1 immunocytochemical and lectin histochemical study of microglial cells in the normal and athymic mice. Glia 12, 44-51.Hume D.A., Perry V.H. &Gordon S. (1983) Immunohistochemical localization of a macrophage specific antigen in developing mouse retina: Phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J. Cell Biol. 97, 253-257.I
mamoto K. &Leblond C.P. (1978) Radioautographic investigation of gliogenesis in the corpus callosum of young rats. I. Origin of microglial cells. J. Comp. Neurol. 180, 139-164.Imamoto K., Fujiwara R., Nagai T. &Maeda T. (1982) Distribution and fate of macrophagic ameboid cells in the rat brain. Arch. Histo. Jap. 45, 505-518.Imamura K., Ito M., Suzumra A., Asai J. &Takahashi A. (1990) Generation and characterization of monoclonal antibodies against rat microglia and ontogenetic distribution of positive cells. Lab. Invest. 63, 853-861.Innocenti G.M., Koppel H. &Clarke S. (1983a) Transitory macrophages in the white matter of the developing visual cortex I. Light and electron microscopic characteristics and distribution. Dev. Brain Res. 11, 39-53.Innocenti G.M., Koppel H. &Clarke S. (1983b) Transitory macrophages in the white matter of the developing visual cortex. II. Development and relations with axonal pathways. Dev. Brain Res. 11, 55-66.Itagaki S., McGeer P.L. &Akiyama H. (1988) Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer’s disease brain tissue. Neurosci. Lett. 91, 259-264.Ivy O.G. &Hillackey H.P. (1978) Transient populations of glial cells in developing rat telencephalon revealed by horseradish peroxidase. Brain Res. 158, 213-218.Jordan F.L. &Thomas W.E. (1988) Brain macrophages; question of origin and interrelationships. Brain Res. 472, 165-178.Jorgensen M.B., Finsen B.R. Jensen M.B., Castellano B., Diemer N.H. &Zimmer J. (1993) Microglia and astroglial reactions to ischemica and kainic acid-induced lesions of the adult rat hippocampus. Exp. Neurol. 120, 70-88.Juba A. (1934) Untersuchungen uber die Entwicklung der Hortegaschen Mikroglia des Menschen. Arch. Psychiat. Nervenkr. 101, 577-592.Kaur C. &Ling E.A. (1991) A study of the transformation of amoeboid microglial cells into microglia labelled with the isolectin Griffonia simplicifolia in postnatal rats. Acta Anat. 142, 118-125.Kaur C., Ling E.A. &Wong W.C. (1984) Cytochemical localisation of 5’-nucleotidase in amoeboid microglial cells in the brain of postnatal rats. J. Anat. 139, 1-7.Kaur C., Ling E.A. &Wong W.C. (1985) Transformation of amoeboid microglial cells into microglia in the corpus callosum of the postnatal rat brain. An electron microscopical study. Arch. Histol. Jap. 48, 17-25.Kaur C., Ling E.A. &Wong W.C. (1987) Localization of thiamine pyrophosphatase in the amoeboid microglial cells in the brain of postnatal rats. J. Anat. 152, 13-22.Kaur C., Ling E.A. &Wong W.C. (1990) Lectin labelling of amoeboid microglial cells in the brain of postnatal rats. J. Anat. 173, 151-160.Kaur C., Chan Y.G. &Ling E.A. (1992) Ultrastructural and Immunocytochemical studies of macrophages in an excitotoxin induced lesion in the rat brain. J. Hirnforsch. 33, 645-652.Kaur C., Yong E.S. &Ling E.A. (1993) Studies of activated microglia and macrophages in lumbosacral spinal cord following an intraperitoneal injection of 6-aminonicotinamide into adult rats. Histol. Histopathol. 8, 699-707.Kawaguchi M. (1980) Electron microscopic study on the amoeboid cells in the roof plate of early chick embryo brain. Arch. Histol. Jap. 43, 311-317. Kiefer R. &Kreutzberg G.W. (1991) Effects of dexamethasone on microglia activation in vivo selective downregulation of major histocompatibility complex class II expression in regenerating facial nucleus. J. Neuroimmunol. 34, 99-108.Kiefer R., Lindholm D. &Kreutzberg G.W. (1993) Interleukin-6 and transforming growth factor-beta-1 mRNAs are induced in the rat facial nucleus following motoneuron axotomy. Eur. J. Neurosci. 5, 775-781.Kiefer R., Supler M.L., Toyka K.V. &Streit W.J. (1994) In situ detection of transforming growth factor-beta mRNA in experimental rat glioma and reactive glial cells. Neurosci. Lett. 166, 161-164Kitamura T., Miyake T. &Fujita S. (1984) Genesis of resting microglia in the gray matter of mouse hippocampus. J. Comp. Neurol. 226, 421-433.Koeing S., Gendelman H.E., Orenstein J.M., Dal Canto M.C., Pezeshkpour G.H., Yungbluth M., Janota F., Aksamit A., Martin M.A. &Faui A.S. (1986) Detection of AIDS patients with encephalopathy. Science 233, 1089-1093.Konno H., Yamamoto T., Iwasaki Y., Suzuki H., Saito T. &Terunuma H. (1989) Wallerian degeneration induces Ia-antigen expression in the rat brain. J. Neuroimmunol. 25, 151-159.Kreutzberg G.W. (1966) Autoradiographische Untersuchungen uber die Beteiligung von Gliazellen an der axonalen Reaktion im Facialisdern der Ratte. Acta Neuropathol. 7, 149-161.Kreutzberg G.W. (1968) Uber perineuronale Mikrogliazellen (autoradiographische Untersuchung). Acta Neuropathol. Suppl. 4, 141-145.Lafarga M. &Palacios G. (1975) Ultrastructural study of pericytes in the rat supraoptic nucleus. J. Anat. 120, 433-438.Lang R.A. &Bishop J.M. (1993) Macrophages are required for cell death and tissue remodelling in the developing mouse eye. Cell 74, 453-462.Lassmann H., Zimprich F., Vass K. &Hickey W.F. (1991) Microglial cells are a component of the perivascular glia limitans. J. Neurosci. Res. 28, 236-243.Lassmann H., Schmied M., Vass K. &Hickey W.F. (1993) Bone marrow derived elements and resident microglia in brain inflammation. Glia 7, 19-24.Lawson L.J., Perry V.H., Dri P. &Gordon S. (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151-170.Lawson L.J., Perry V.H. &Gordon S. (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48, 405-415.Lee S.C., Liu W., Dickson D.W., Brosnan C.F. &Berman J.W. (1993) Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1. J. Immunol. 150, 2659-2667.Lee S.C., Liu W., Brosna C.F. &Dickson D.W. (1994) GM-CSF promotes proliferation of human fetal and adult microglia in primary cultures. Glia 12, 309-318. Leong S.K. &Ling E.A. (1992) Amoeboid and ramified microglia: their interrelationship and response to brain injury. Glia 6, 39-47.Lewis P.D. (1968) The fate of the subependymal cells in the adult rat brain, with a note on the origin of microglia. Brain 91, 721-738.Lindholm D., Castren E., Kiefer R., Zafra F. &Thoenen H. (1992) Transforming growth factor-1 in the rat and adult microglia in primary cultures. Glia 12, 309-318.Ling E.A. (1974) The subependyma of the primate slow loris (Nycticebus coucang coucang). Tissue Cell 6, 371-380.Ling E.A. (1976a) Some aspects of amoeboid microglia in the corpus callosum and neighbouring regions of neonatal rats. J. Anat 121, 29-45.Ling E.A. (1976b) Study in the changes of the proportions and numbers of the various glial cells in the spinal cord of neonatal and young adult rats. Acta Anat. 96, 188-195.Ling E.A. (1976c) Electron microscopic identificaton of ameboid microglia in the spinal cord of newborn rats. Acta Anat. 96, 600-609.Ling E.A. (1977) Light and electron microscopic demonstration of some lysosomal enzymes in the ameboid microglia in neonatal rat brain. J. Anat. 123, 637-648.Ling E.A. (1978a) Brain macrophages in rats following intravenous labelling of mononuclear leucocytes with colloidal carbon. J. Anat. 125, 101-106.Ling E.A. (1978b) Electron microscopic studies of macrophages in Wallerian degeneration of rat optic nerve after intravenous injection of colloidal carbon. J. Anat. 126, 111-121.Ling E.A. (1980) Cytochemical localization of peroxidase in amoeboid cells in the corpus callosum in postnatal rats. Arch Histol. Jap. 43, 305-310.Ling E.A. (1981) The origin and nature of microglia. In: Advances in Cellular Neurobiology, Vol. 2, (S. Federoff and L.Hertz, eds.) Academic Press, New York. pp. 33-82.Ling E.A. &Tan C.K. (1974) Amoeboid microglial cells in the corpus callosum of neonatal rats. Arch. Histol. Japan. 360, 265-280.Ling E.A. &Wong W.C. (1993) The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7, 9-18.Ling E.A., Kaur C. &Wong W.C. (1982) Light and electron microscopic demonstration of non-specific esterase in amoeboid microglial cells in the corpus callosum in postnatal rats: a cytochemical link to monocyte. J. Anat. 135, 385-394.Ling E.A., Kaur C. &Wong W.C. (1991) Expression of major histocompatibility complex and leucocyte common antigen in amoeboid microglia in postnatal rats. J. Anat. 177, 117-126.Ling E.A., Kaur C., Yick T.Y. &Wong W.C. (1990) Immunocytochemical localization of CR3 complement receptors with OX-42 in amoeboid microglia in postnatal rats. Anat. Embryol. 182, 481-486.Ling E.A., Paterson J.A., Privat A., Mori S. &Leblond P. (1973) Investigation of glial cells in semithin section. I. Identification of glial cells in the brain of young rats. J. Comp. Neurol. 149, 43-71.Ling E.A., Penney D. &Leblond C.P. (1980) Use of carbon-labelling to demonstrate the role of blood monocytes as precursors of the ‘amoeboid cells’ present in the corpus callosum of postnatal rats. J. Comp. Neurol. 193, 631-657.Ling E.A., Tseng C.Y., Voon F.C.T. &Wong W.C. (1983) Isolation and culture of amoeboid microglial cells from the corpus callosum and cavum septum pellucidum in postnatal rats. J. Anat. 137, 223-233.Lortie C., King G.M. &Adamson I.Y.R. (1990) Effects of dexamethosone on macrophages in fetal and neonatal rat lung. Pediatr. Pulmo. 8, 138-44.Majno G. &Joris I. (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146, 3-15.Malipiero U.V., Frei K &Fontana A. (1990) Production of hemopoietic colony-stimulating factors by astrocytes. J. Immunol. 144, 3816-3821.Mallat M., Houlgatte R., Brachet P. &Prochiantz A. (1989) Lipopolysaccharide-stimulated rat brain macrophages release NGF in vitro. Dev. Biol. 133, 309-311.Marciano F.F., Gocht A., Dentinger M.P., Hof L., Csiza C.K. &Barron K.D. (1990) Axonal regrowth in the amyelinated optic neuve of the myelin-deficinet rat: ultrastructural observations and effects of ganglioside administraion. J. Comp. Neurol. 295, 219-234.Marty S., Dusart I. &Peschanski M. (1991) Glial changes following an excitotoxic lesion in the CNS. I. Microglia/macrophages. Neuroscience 45, 529-539.Matsumoto Y. &Fujiwara M. (1986) In situ detection of class I and II major histocompatibility complex antigens in the rat central nervous system during experimental allergic encephalomyelitis. J. Neuroimmunol. 12, 265-277.Matsumoto Y. &Fujiwara M. (1987) Absence of donor-type major histocompatibiltiy complex class I antigen-bearing microglia in the rat central nervous system of radiation bone marrow chimeras. J. Neuroimmunol. 17, 71-82.Matsumoto Y., Watabe K. &Ikuta F. (1985) Immunohistochemical study on neuroglia identified by the monoclonal antibody against a macrophage differentiation antigen (Mac-1). J. Neuroimmunol. 9, 379-389.Matthews M.A. (1974) Microglia and reactive “M” cells of degenerating central nervous system: Does similar morphology and function imply a common origin? Cell Tissue Res. 148, 477-491.McGeer P.L., Itagaki S., Tago H. &McGeer E.G. (1987a) Reactive microglia in patients with senile demontia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Nerosci. Lett. 79, 195-200.McGeer P.L., McGeer E.G., Itagaki S. &Mizukawa K. (1987b) Anatomy and pathology of the basal ganglia. Can. J. Neurol. Sci. 14, 363-372.McGeer P.L., Itagaki S. &McGeer E.G. (1988a) Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol. (Berlin) 76, 550-557.McGeer P.L., Itagaki S., Boyes B.E. &McGeer E.G. (1988b) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinsons and Alzheimers disease brains. Neurology 38, 1285-1291.Merrill J.E. (1991) Effects of interleukin-1 and TNF- on astrocytes, microglia, oligodendrocytes, and glia precursors in vitro. Dev. Neurosci. 13, 130-137.Mey J. &Thanos S. (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res. 602, 304-317.Milligan C.E., Cunningham T.J. &Levitt P. (1991) Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. J. Comp. Neurol. 314, 125-135.Monteiro R.A., Rocha E. &Marini-Abreu M.M. (1996) Do microglia arise from pericytes? An ultrastructural and distribution study in the rat cerebellar cortex. J. Submicrosc. Cytol. Pathol. 28, 457-469.Moore S. &Thanos S. (1996) The concept of microglia in relation to central nervous system disease and regeneration. Prog. Neurobiol. 48, 441-460.Mori S. &Leblond C. P. (1969) Identification of microglia in the light and electron microscope. J. Comp. Neurol. 135, 57-80.Morioka T. &Streit W.J. (1991) Expression of immunomolecules on microglial cells following neonatal sciatic nerve axotomy. J. Neuroimmunol. 35, 21-30.Morioka T., Baba T., Black K.L. &Streit W.J. (1992) Response of microglial cells to experimental rat glioma. Glia 6, 75-79.Murabe Y. &Sano Y. (1981a) Morphological studies on neuroglia. I. Electron microscopic identification of silver-impregnated glial cells. Cell Tissue Res. 216, 557-568.Murabe Y. &Sano Y. (1981b) Thiamine pyrophosphatase activity in the plasma membrane of microglia. Histochemistry 71, 45-52.Murabe Y. &Sano Y. (1981c) Possible involvement of microglial cells in synaptic function. Neurosci. Lett. Suppl. 6, S21.Murabe Y. &Sano Y. (1982a) Morphological studies on neuroglia. V. Microglial cells in the cerebral cortex of the rat, with special reference to their possible involvement in synaptic function. Cell Tissue Res. 223, 493-506.Murabe Y. &Sano Y. (1982b) Morphological studies on neuroglia. VI. Postnatal development of microglial cells. Cell Tissue Res. 225, 469-485.Murabe Y., Ibata Y. &Sano Y. (1982) Morphological studies on neuroglia. IV. Proliferative response of non-neuronal elements in the hippocampus of the rat to kainic acid-induced lesions. Cell Tissue Res. 222, 223-226.Nakajima K. &Kohsaka S. (1993) Functional roles of microglia in the brain. Neurochemistry 63, 2048-2057.Naujoks-Manteuffel C. &Niemann U. (1994) Microglial cells in the brain of Pleurodeles waltl (urodela, salamandridae) after Wallerian degeneration in the primary visual system using Bandeiraea simplicifolia isolectin B4-cytochemistry. Glia 10, 101-113.Navia B.A., Cho E.S, Petito C.K. &Price R.W. (1986) The AIDS dementia complex. II. Neuropathol. Ann. Neurol. 19, 525-535.Nissl F. (1899) Ueber einige Beziehungen zwischen Nervenzel-lenerkrankungen and gliosen erscheinungen bei berschiedenen Spsychosen. Arch. Psych. 32, 1-21.Oppenheim R.W., Rrevette D., Tytell M. &Homma S. (1990) Naturally occurring and induced neuronal death in the chick embryo in vivo requires protein and DNA synthesis: evidence for the role of cell death genes. Dev. Biol. 138, 104-113.Palacios G. (1990) A double immunocytochemical and histochemical technique for demonstration of cholinergic neurons and microglial cells in basal forebrain and neostriatum of the rat. Neurosci. Lett. 115, 13-18.Pearson H.E., Payne B.R. &Cunigham T.J. (1993) Microglial invasion and activation in response to naturally occurring neuronal degeneration in the ganglion cell layer of the postnatal cat retina. Brain Res., Dev. Brain Res. 76, 249-255.Penfield W. (1932) Neuroglia and microglia. The interstitial tissue of the central nervous system. In: Special Cytology”, (E.V. Cowdry, ed.), 2nd ed. Vol. III. Hoeber, New York.Perry V.H. &Gordon S. (1987) Modulation of CD4 antigen on macrophages and microglia in rat brain. J. Exp. Med. 166, 1138-1143.Perry V.H. &Gordon S. (1988) Macrophages and microglia in the nervous system. TINS 11, 273-277.Perry V.H. &Gordon S. (1991) Macrophages and the nervous system. Int. Rev. Cytol. 125, 203-244.Perry B.H., Hume D.A. &Gordon .S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15, 313-326.Peter A., Palay S.L. &Webster H. de F. (1991) “The fine structure of the nervous system. The nerurons and supporting cells.” Saunders, Philadelphia, Pennsylvania.Phillips D.E. (1973) An electron microscopic study of macroglia and microglia in the lateral funiculus of the developing spinal cord in the fetal monkey. Z. Zellforsch. 140, 145-167.Pow D.V., Perry V.H., Morris J.F. &Gordon S. (1989) Microglia in the neurohypophysis associate with and endocytose termianl portions of neurosecretory n
eurons. Neuroscience 33, 567-578.Privat A. (1975) Postnatal gliogenesis in the mammalian brain. Int. Rev. Cytol. 430, 281-323.Raff M.C. (1992) Social controls on cell-survival and cell-death. Nature 356, 397-400.Raff M.C., Barres B.A., Burne JF., Coles H.S., Ishizaki Y. &Jacobson M.D. (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695-700.Raivich G. &Kreutzberg G.W. (1994) Pathophysiology of glial growth factor receptors. Glia 11, 129-146.Raivich G., Gehrmann J. &Kreutzberg G.W. (1991) Increase of macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor receptors in the regenerating rat facial nucleus. J. Neurosci. Res. 30, 682-686.Ransom P.A. &Thomas W.E. (1991) Pinocytosis as a select marker of ramified microglia in vivo and in vitro. J. Histochem. Cytochem. 39, 853-858.Richardson A., Hao C. &Fedoroff S. (1993) Microglia progenitor cells: a subpopulation in cultures of mouse neopallial astroglia. Glia 7, 25-33.Riches D.W., Channon J.Y., Leslie C.C. &Henson P.M. (1988) Receptor-mediated signal transduction in mononuclear phagocytes. Prog. Allergy 42, 65-122.Rinaman L., Card J.P. &Enquist L.W. (1993) Spatiotemporal responses of astrocytes, ramified microglia, and brain macrophages to central nervous system infection with pseudorabies virus. J. Neurosci. 13, 685-702.Riva-Depaty I.R., Fardeau C., Mariani J., Bouchaud C. &Delhaye-Bouchaud N. (1994) Contribution of peripheral macrophages and microglia to the cellular reaction after mechanical or neurotoxin-induced lesions of the rat brain. Exp. Neurol. 128, 77-87.Robinson A.P., White T.M. &Mason D.W. (1986) Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42. Immunolology 57, 239-247.Rosessman U. &Friede R.L. (1968) Entry of labelled monocytic cells into the central nervous system. Acta Neuropathol. 10, 359-362.Russell G.V. (1962) The compound granular corpuscle or gitter cell. A review, together with notes on the origin of this phagocyte. Tex. Rep. Bio. Med. 20, 338-351.Rydberg E. (1932) Cerebral injury in newborn children consequent on birth trauma, with an inquiry into the normal and pathological anatomy of the neuroglia. Acta Pathol. Microbiol. Scand. Suppl. 10, 1-247.Santha K. &Juba A. (1933) Weitere untersuchungen uber die entwicklung der hortegaschen mikroglia. Arch. Psychiat. Nervenkr. 98, 598-613.Sawada M., Hara N. &Maeno T. (1991) Tumor necrosis factor reduces the Ach-induced outward current in identified Aplysia neurons. Neurosci. Lett. 131, 217-220.Sawada M., Suzumura A. &Marunouchi T. (1992) Downoregulation of CD4 expression in cultured microglia by immuno-suppressants and lipopolysaccharide. Biochem. Biophys. Res. Com. 189, 869-876.Sawada M., Suzumura A. &Marunouchi T. (1995) Cytokine network in the central nervous system and its roles in growth and differentiation of glial and neuronal cells. Int. J. Dev. Neurosci. 13, 253-264.Sawada M., Kondo N., Suzumura A. &Marunouchi T. (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 491, 394-397.Schnitzer J. (1989) Enzyme-histochemical demonstration of microglial cells in the adult and postnatal rabbit. J. Comp. Neurol. 282, 249-263.Schultze B. &Korr H. (1981) Cell Kinetics studies of different cell types in the developing and adult brain of the rat and the mouse: a reviews. Cell Tissue Kinet. 14, 309-325.Sethna M.P. &Lampson L.A. (1991) Immune modulation within the brain: recruitment of inflammatory cells and increased major histocompatibility antigen expression following intracerebral injection of interferon-gamma. J. Neuroimmunol. 34, 121-132.Shimoji M., Nakajima K., Takei N., Hamanoue M. &Kohsaka S. (1991) Production of basic fibroblast growth factor in cultured rat brain microglia. Neurosci. Lett. 123, 229-231.Sievers J. &Parwaresch M.R. (1993a) Astrozyten induzieren eine Mikroglia-ahnliche Morphologie in Milzmakrophagen und Blutmonozyten. Ann. Anat. Suppl. 175, 324.Sievers J. &Parwaresch M.R. (1993b) Astrocytes induce the differentiation of blood monocytes and spleen macrophages into microglia-like cells. In: Gene-Brain-Behaviour. (N. Elsner &M. Heisenberg, eds.), Thieme, Stuttgart. p. 722.Sievers J., Parwaresch M.R. &Wottge H.U. (1994) Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: Morphology. Glia 12, 245-258.Siever J., Hartmann D., Wilms H., Wollmer A. &Schmidtmayer J. (1996) Is the ramification of microglia a special case of macrophage morphology in epithelia? Topical Issues in Microglia Res. pp. 105-125.Sminia T., De Groot C.J.A., Dijkstra C.D., Koetsier J.C. &Polman C.H. (1987) Macrophages in the central nervous system of the rat. Immunobiology 174, 43-50.Sorokin S.P., Hoyt R.F.Jr., Blunt D.G. &McNelly N.A. (1992) Macrophage development: II. Early ontogeny of macrophage populations in brain, liver, and lungs of rat embryos as revealed by a lectin marker. Anat. Rec. 232, 527-550.Stagaard M., Balslev Y., Lundberg J.J. &Mollgard K. (1987) Microglia in the hypendyma of the rat subcommissural organ following brain lesion with serotonin neurotoxin J. Neurocytol. 16, 131-142.Steiniger B. &van der Meide P.H. (1988) Rat ependyma and microglia cells express class II MHC antigens after intravenous infusion of recombinant gamma interferon. J. Neuroimmunol. 19, 111-118.Stensaas L.J. (1975) Pericytes and perivascular microglia cells in the basal forebrain of the neonatal rabbit. Cell Tissue Res. 158, 517-541.Streit W.J. (1990) An improved staining method for rat microglial cells using the lectin from Griffonia simplicifolia (GSA-I B4). J. Histochem. Cytochem. 38, 1683-1686.Streit W.J. &Graeber M.B. (1993) Heterogeneity of microglial and perivascular cell populations: Insights gained from the facial nucleus paradigm. Glia 7, 68-74.Streit W.J. &Kreutzberg G.W. (1987) Lectin binding by resting and reactive microglia. J. Neurocytol. 16, 249-260.Streit W.J. &Kreutzberg G.W. (1988) Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J. Comp. Neurol. 268, 248-263.Streit W.J., Graeber M.B. &Kreutzberg G.W. (1988) Functional plasticity of microglia: A review. Glia 1, 301-307.Streit W.J., Graeber M.B. &Kreutzberg G.W. (1989a) Expression of Ia antigens on perivascular and microglial cells after sublethal and lethal neuronal injury. Exp. Neurol. 105, 115-126.Streit W.J., Graeber M.B. &Kreutzberg G.W. (1989b) Peripheral nerve lesion produces increased levels of major histocompatability antigens in the central nervous system. J. Neuroimmunol. 21, 117-123.Sturrock R.R. (1974) Histogenesis of the anterior limb of the anterior commissure of the mouse brain 3. An electron microscopic study of gliogenesis. J. Aant. 117, 37-53.Suzuki H., Franz H., Yamamoto T., Iwasaki Y. &Konno H. (1988) Identification of the normal microglial population in human and rodent nervous tissue using lectin-histochemistry. Neuropathol. Appl. Neurobiol. 14, 221-227.Suzumura A., Mezitis S.G., Gonatas N.K. &Silberberg D.H. (1987) MHC antigen expression on bulk isolated macrophage-microglia from newborn mouse brain: Induction of Ia antigen expression by gamma interferon. J. Neuroimmunol. 15, 263-278.Suzumura A., Sawada M., Yamamoto H. &Marunouchi T. (1990) Effects of colony stimulating factors on isolated microglia in vitro. J. Neuroimmunol. 30, 111-120.Takahashi K. &Naito M. (1993) Development, differentiation, and proliferation of macrophages in the rat yolk sac. Tissue Cell 25, 351-362.Takahashi K., Yamamura F. &Naito M. (1989) Differentiation, maturation, and proliferation of macrophage in the mouse yolk sac: a light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study. J. Leukocytol. Biol. 45, 87-96. Thanos S., Bahr M., Barde Y.A. &Vanselow J. (1989) Survival and axonal elongation of adult rat retinal ganglion cells. In vitro effects of lesioned sciatic nerve and brain derived-neurotrophic factor. Eur. J. Neurosci. 1, 19-26. Thanos S., Mey J. &Wild M. (1993) Treatment of the adult retina with microglia-suppressing factors retards axotomy-induced neuronal degradation and enhances axonal regeneration in vivo and in vitro. J. Neurosci. 13,2, 555-565.Thery C., Hetier E., Evrard C. &Mallat M. (1990) Expression of macrophage colony stimulating factor gene in the mouse brain during development. J. Neurosci. Res. 26, 129-133.Thomas W.E. (1992) Brain macrophages: evaluation of microglia and their functions. Brain Res. Rev. 17, 61-74.Ting J.P.Y., Nixon D.F., Weiner L.P. &Frelinger J.A. (1983) Brain Ia antigens have a bone marrow origin. Immunogenetics 17, 295-301.Tseng C.Y., Ling E.A. &Wong W.C. (1983) Light and electron microscopic and cytochemical identification of amoeboid microglial cells in the brain of prenatal rats. J. Anat. 136, 4. 837-849.Unanue E.R., Beller D.I., Lu C.Y. &Allen P.M. (1984) Antigen presentation: comments on its regulation and mechanism. J. Immunol. 132, 1-5.Valentino K.L. &Jones E.G. (1981) Morphological and immunocytochemical identification of macrophages in the developing corpus callosum. Anat. Embryol. 163, 157-172.Valentino K.L. &Jones E.G. (1982) The early formation of the corpus callosum: a light and electron microscopic study in fetal and neonatal rats. J. Neurocytol. 11, 583-609.Vass K. &Lassmann H. (1990) Intrathecal application of interferon gamma: progressive appearance of MHC antigens within the rat nervous system. Am. J. Pathol. 137, 789-800.Vass K., Lassmann H., Wekerle H. &Wisniewski H.M. (1986) The distribution of Ia antigen in the lesions of rat acute experimental allergic encephalomyelitis. Acta Neuropathol. (Berlin) 70, 149-160.Vaughan D.W. &Peters A. (1974) Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: An electron microscopic study. J. Neurocytol. 3, 405-429.Ward S.A., Ransom P.A., Booth P.L. &Thomas W.E. (1991) Characterization of ramified microglia in tissue culture: pinocytosis and motility. J. Neurosci. Res. 29, 13-28.Watkins B.A., Dorn H.H., Kelly W.B., Armstrong R.C., Potts B.J., Michaels F., Kufta C.V. &Dubois-Dalcq M. (1990) Specific tropism of HIV-1 for microglia cells in primary human brain cultures. Science 249, 549-553.Wilms H., Hartmann D. &Sievers J. (1997) Ramification of microglia, monocytes and macrophages in vitro: Influences of various epithelial and mesenchymal cells and their conditioned media. Cell Tissue Res. 287, 447-58.Wilson M.A., Gaze R.M., Goodhand I.A. &Taylor J.S.H. (1992) Regeneration in the Xenopus tadpole optic neuve is preceded by a massive macrophage/microglial response. Anat. Embryol. 186, 75-89.Wong G.H., Bartlett P.F., Clark-Lewis I., Battye F. &Schrader J.W. (1984) Inducible expression of H-2 and Ia antigens on brain cells. Nature (London) 310, 688-691.Wong R.O.L. &Hughes A. (1987) Role of cell death in the topogenesis of neuronal distributions in the developing cat retinal ganglion cell layer. J. Comp. Neurol. 262, 496-511.Wu C.H., Wen C.Y., Shieh J.Y. &Ling E.A. (1992) A qualitative and morphometric study of the transformation of amoeboid microglia into ramified microglia in the developing corpus callosum in rat. J. Anat. 181, 423-430.Wu C.H., Wen C.Y., Shieh J.Y. &Ling E.A. (1993) A quantitative study of the differentiation of microglial cells in the developing cerebral cortex in rats. J. Anat. 182, 403-414.Wu C.H., Wen C.Y., Shieh J.Y. &Ling E.A. (1994) Down-regulation of membrane glycoprotein in amoeboid microglia transforming into ramified microglia in postnatal rat brain. J. Neurocytol. 23, 258-269.Wu CH., Wen C.Y., Shieh J.Y. &Ling E.A. (1996) Use of lectin as a tool for the study of microglial cells: expression and regulation of lectin receptors in normal development and under experimental conditions. In: Topical Issues in Microglia Research (E.A. Ling, C.K. Tan &C.B.C. Tan, eds.) Singapore neuroscience association. pp. 83-104.Wu C.H., Wang H.J., Wen C.Y., Lien K.C. &Ling E.A. (1997) Response of amoeboid and ramified microglial cells to lipopolysaccharide injections in postnatal rats - a lectin and ultrastructural study. Neurosci. Res. 27, 133-141.Yee K.T., Smetanka A.A., Lund R.D. &Rao K. (1990) Differential expression of class I and class II major histocompatibility complex antigen in early postnatal rats. Brain Res. 530, 121-125. Ashwell K.W.S. &Bobryshev Y.V. (1996) The development role of microglia. In” Topical Issues in Microglia Reseach” (Ling E.A., Tan C.D. &Tan C.B.C., Eds). Singapore neuroscience association. pp. 65-82.Cox G., Ohtoshi T., Vancheri C., Denburg J.A., Dolovich J., Gauldie J. & Jordana M. (1991) Promotion of eosinophil survival by human bronchial epithelial cells and its modulation by steroids. Am. J. Respir. Cell Mol. Biol. 4, 525-531.Gebicke-Haerter P.J., Bauer J., Schobert A. &Northoff H. (1989) Lipopolysaccharide-free conditions in primary astrocyte cultures allow growth and isolation of microglial cells. J. Neurosci. 9, 183-194.Gehrmann J. (1996) Microglia: a sensor to threats in the nervous system? Res. Virol. 147, 79-88.Heiter E., Ayala J., Denefle P., Bousseau A., Rouget P., Mallat M. &Prochiantz A. (1988) Brain macrophages synthesize interleukin-1 and mRNAs in vitro. J. Neursoci.. Res. 21, 391-397.Jones L.L., Banati R.B., Graeber M.B., Bonfanti L., Raivich G. &Kreutzberg, G.W. (1997) Population control of microglia: does apoptosis play a role? J. Neurocytol. 26, 755-770.Kawaguchi M. (1978) Electron microscopic and histochemical studies on the amoeboid microglial cells in the developing chick brain. Acta Anat. Nippon. 53, 219-237.Liu W., Brosnan C.F., Dickson D.W. &Lee S.C. (1994) Macrophage colony-stimulating factor mediates astrocyte-induced microglial ramification in human fetal central nervous system culture. Am. J. Pathol. 145, 48-53.Mizuno T., Sawada M., Suzumura A. &Marunouchi T. (1994) Expression of cytokines during glial differentiation. Brain Res. 656, 141-146.Raivich G., Moreno-Flores M.T., Moller J.C. &Kreutzberg G.W. (1994) Inhibition of posttraumatic microglial proliferation in a genetic mocdel of macrophage colony-stimulating factor efficiency in the mouse. Eur. J. Neurosci. 6, 1615-1618.Sawada M., Suzumura A., Itoh Y. &Marunouchi T. (1993) Production of interleukin-5 by mouse astrocyte and microglia in culture. Neurosci. Lett. 155, 175-178.Sawada M., Suzumura A. Yamamoto H. &Marunouchi T. (1990) Activation and proliferation of the isolated microglia by colony stimulating factor-1 and possible involvement of protein kinase C. Brain Res. 509, 119-124.Suzumura A., Sawada M., Itoh Y. &Marunouchi T. (1994) Interleukin-4 induces proliferation and activation of microglia but suppresses their induction of class II major histocompatibiolity complex antigen expression. J. Neuroimmunol.53, 209-218.Suzumura A., Sawado M., Yamamoto H. &Marunouchi T. (1993) Transforming growth factor- suppresses activation and proliferation of microglia in vitro. J. Neursoci. Res. 151, 2150-2158.Thanos S (1991a) Specific transcellular carbocyanine-labelling of rat retinal microglia during injury-induced neuronal degeneration. Neurosci. Lett. 127, 108-112.Thanos S. (1991b) The relationship of microglial cells to dying neurons during natural neuronal cell death and axotomy-induced degeneration of the rat retina. Eur. J. Neurosci. 3, 1189-1207.Thanos S., Pavlidis C., Mey J. &Thiel H.J. (1992) Specific staining of microglia in the adult rat after traumatic degeneration of carbocyanine-filled retinal ganglionic cells. Exp. Eye Res. 55, 101-117.Tomozawa Y., Yabuuchi K., Inoue T. &Satoh M. (1995) Participation of cAMP and cAMP-dependent protein kinase in beta-adrenoreceptor-mediated interleukin-1 mRNA induction in cultured microglia. Neurosci. Res. 22, 399-409.Wahl S.M., Allen J.B., McCatney-Francis N., Moranti-Kossmann M.C., Kossmann T., Ellinsgworth L., Mai U.E.H., Mergenhagen S.E. &Orenstein J.M. (1991) Macrophage- and astrocyte-derived transforming growth factor  as a mediator of central neuvous system dysfunction in acquired immune dificiency syndrome. J. Exp. Med. 173, 981-991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top