跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王曰然
研究生(外文):Yueh-Jan Wang
論文名稱:脊髓傷害傳入訊息的效率及胞質中鈣結合蛋白在軸突受傷的脊髓投射中樞神經元中的表現
論文名稱(外文):Spinal Cord InjuryRegulations on the Efficacy of Afferent and Cytosolic Calcium-Binding Proteins in Axotomized Cord-Projecting Central Neurons
指導教授:曾國藩曾國藩引用關係
指導教授(外文):Guo-Fang Tseng
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:解剖學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:70
中文關鍵詞:脊髓傷害軸突截斷離子性麩胺酸受體代謝性麩胺酸受體鈣結合蛋白紅核脊髓徑神經元
外文關鍵詞:spinal cord injuryaxotomyionotropic glutamate receptorsmetabotrobic glutamate receptorscalcium-binding proteinsrubrospinal neurons
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
脊髓受傷時,經常損害到軸突投射至脊髓的中樞神經元。我們曾以大白鼠的紅核脊髓徑神經元為實驗模型,發現受傷側的紅核神經元比對側未受傷的神經元容易被興奮。因此我們檢驗受傷側紅核中來自小腦的傳入神經纖維是否有變化,發現其分佈的模式類似於正常動物。電子顯微鏡下,神經膠細胞的突起也沒有阻隔在興奮性神經終末與受傷紅核神經元間的現象。為了瞭解中樞神經元如何因應受傷後仍然存在的麩胺酸性傳入神經纖維的刺激,我們進一步檢驗受傷神經元本身的麩胺酸受體的表現。
正常紅核脊髓徑神經元中各種麩胺酸受體均有表現,其中GluR2的表現程度最低,NR1的表現程度最高,由此推斷紅核脊髓徑神經元中所含的麩胺酸受體可經由活化興奮性突觸而讓鈣離子進入細胞內。紅核脊髓徑神經元受傷後二至六天,離子性麩胺酸受體次單位(receptor subunits),包括GluR1~4及NR1的表現均降低,並且在第七天時回升到相當於正常紅核脊髓徑神經元的表現。由於軸突受傷並沒有引起顯著紅核脊髓徑神經元傳入神經纖維的減少,也沒有神經膠細胞突起隔開興奮性突觸間隙的現象,所以,離子性麩胺酸受體的表現暫時降低有助於減少傳入訊息的效率,也許因此而降低興奮所造成的神經毒性。然而,與周邊神經系統不同的是紅核脊髓徑神經元受到傷害後,麩胺酸受體的表現在短暫下降後會再度回升,此現象可能和受傷細胞仍然維持脊髓上方發出的側枝,而神經元需回復正常功能有關。
代謝性麩胺酸受體mGluR1,在紅核脊髓徑神經元軸突被截斷後第二天開始緩緩下降,甚至可持續下降至受傷後兩年。雖然多數的麩胺酸受體皆表現在細胞體及近端樹突,但mGluR1在神經氈中的表現明顯,由此推斷mGluR1也表現在遠端樹突。另外,神經氈中也有一些類似軸突的構造也表現mGluR1,推斷mGluR1也有抑制傳入訊息的作用。至於另一種代謝性麩胺酸受體mGluR5在紅核脊髓徑神經元軸突被截斷後的表現降低,受傷後第六天回復,但在第二及四週表現則大幅上升,之後又再度下降到低於正常表現的程度。mGluR5這種隨時間在受傷後數週持續增加的表現,可能與軸突截斷後,神經元較易興奮有關。另外,也有報告指出mGluR5的高度表現可保護小腦顆粒神經細胞免於死亡,因此我們所觀察到mGluR5的表現增加,或可推斷具有保護受傷神經元的功能。
由於活化興奮性突觸會引起大量鈣離子進入細胞,如此會引響受傷神經細胞的生存,因此我們接著檢驗胞質內鈣結合蛋白的表現。在正常的紅核脊髓徑神經元中表現的鈣結合蛋白有calbindin (CB)及parvalbumin (PV)。CB集中在細胞體及樹突的部分,而PV則集中在軸突中。由於細胞體及樹突是接受訊息,而軸突則是傳送訊息的構造,所以CB、PV位在不同區域也許代表它們具有不同的生理意義。在軸突受傷的紅核脊髓徑神經元中也表現這種區隔,雖然PV在受傷後表現不變,但CB的表現則暫時下降。此種短暫CB表現降低也許不利於細胞抵抗受傷所造成的興奮性神經毒性。
Spinal cord injury often damages the axons of cord-projecting central neurons. Using rat rubrospinal neurons as a model we found previously that injured neurons were more excitable than their normal counterparts. To find out whether the survival of injured neurons is accompanied by modification of their afferent inputs, we examined the cerebellar afferent to the injured nuclear area and found it to terminate in a pattern similar to that of their normal counterparts. Ultrastructurally, typical excitatory synapses were found to contact presumed injured neurons with no sign of stripping of synapses by glial cells. To find out how injured neurons might be affected by the persistent glutamatergic afferents, we examined the expression of glutamate receptors in injured neurons.
Expression of the AMPA (GluR1-4) and NMDA (NR1) types of the ionotropic glutamate receptor subunits were found to down-regulate 2 to 6-day-post-injury and returned to normal levels afterward. Expression of GluR2 appeared to be lower than those of GluR1, 3, and 4 suggesting that many AMPA receptors formed on rubrospinal neurons are permeable to Ca2+ since receptors incorporating GluR2 show little Ca2+ permeability. High levels of NR1 was expressed in normal neurons suggesting that significant Ca2+ may enter rubrospinal neurons upon the activation of excitatory synapses. Its expression also displayed a transient decrease subsequent to spinal axonal injury. Since spinal axonal injury induced neither trimming of the afferent inputs nor stripping of synapses by reactive glial cells, under these circumstances, the transient down-regulation of all ionotropic glutamate receptors is expected to lower the efficacy of excitatory synapses and may thus protect injured neurons from excitotoxic influences. In striking contrast to the PNS, injured neurons regained the expression of all temporally down-regulated ionotropic glutamate receptors, hence rejoined the circuitry of higher center functioning since these neurons retained their supraspinal collaterals that innervated brainstem nuclei following spinal axonal injury.
In contrast to ionotropic glutamate receptors, changes in the expression of metabotropic glutamate receptors were much slower. Expression of mGluR1 remained unchanged for 2 days before starting to decline progressively and remained low up to 2-year-post-injury. Contrary to this, mGluR5 was first reduced and regained normal level by day 6, and by 2 and 4-week-post-lesion it was dramatically higher than that of the control side. In our view, this long-lasting up-regulation of mGluR5, which corresponds in time to the persistent increase in the input/output relationship and the overall excitability of such injured neurons may in part account for the alteration of neuronal properties in axotomized neurons. The increase may also provide a protective effect on injured neurons since over-expression of mGluR5 has been reported to protect granule cells from cell death. Following this period of surge, the expression of mGluR5 subsided again up to 2 years following injury. Although most glutamate receptors appeared in the soma and proximal dendrites of rubrospinal neurons, a substantial amount of mGluR1 was found in the neuropil including some axon-like profiles, suggesting that many mGluR1 may be located in distal dendrites and in addition, some may be involved in the presynaptic inhibition of afferent.
Since Ca2+ entered upon the activation of excitatory synapses may be critical to neuronal survival especially in the case of injury, we also examined the expression of cytosolic calcium-binding proteins (CaBPs) in these injured neurons. Both calbindin (CB) and parvalbumin (PV) were found in normal rubrospinal neurons, however they were segregated in the soma-dendritic and axonal compartments, corresponding to the receiving part and the output device of neurons respectively. This unusual compartmentalization suggests that CB and PV may have different physiological significance in neurons. This segregation was maintained although the expression of CB was transiently down-regulated in injured neurons. A transient decrease of CB may decrease the resistance of injured cells to axonal injury since they are likely to play beneficiary roles in the survival and functioning of injured neurons.
COVER
Abstract in Chinese
Abstract
Introduction
Materials and Methods
Results
Part I Regulations on the efficacy of afferent
Part II Calcium-binding proteins
Discussions
Part I Regulations on the efficacy of afferent
Part II Calcium-binding proteins
References
Figure legends
Aiba, A., Kano, M., Chen, C., Stanton, M.E., Fox, G.D., Herrup, K., Zwingman, T.A., Tonegawa, S. (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79: 377-388.
Alvarez, F. J., Dewey, D. E., Carr, P. A., Cope, T. C., and Fyffe, R. E. W. (1997) Downregulation of metabotropic glutamate receptor 1a in motoneurons after axotomy. NeuroReport 8: 1711-1716.
Andressen, C., Blűmcke, I., and Celio, M. R. (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res. 271: 181- 208.
Angaut, P., Batini, C., Billard, J. M., and Daniel, H. (1986) The cerebellorubral projection in the rat: Retrograde anatomical study. Neurosci. Lett. 68: 63- 68.
Antal, M., Freund, T. F., and Polgar, E. (1990) Calcium-binding proteins, parvalbumin- and calbindin-D28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: A light and electron microscopic study. J. Comp. Neurol. 295: 467- 484.
Baimbridge, K. G., Celio, M. R., and Rogers, J. H. (1992) Calcium-binding proteins in the nervous system. Trends Neurosci. 15: 303- 308.
Bashir, Z.I., Bortolotto, Z.A. Davies, Z.A., Berretta, N., Irving, A.J., Seal, A.J., Henley, J.M., Jane, D.E., Watkins, J.C., and Collingridge, G.L. (1993) Induction of LTP in hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363: 347-350.
Baude, A., Nusser, Z., Roberts, J.D.B., Mulvihill, E., McIlhinney, R.A.J., and Somogyi, P. (1993) The metabotropic glutamate receptor (mGluR1) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reation. Neuron 11: 771-787.
Behnisch, T. and Reymann, K.G. (1993) Co-activation of metabotropic glutamate and N-methyl-D-aspartate receptors is involved in mechanisms of long-term potentiation maintenance in rat hippocampal CA1 neurons. Neuroscience 54: 37-47.
Benes, F. M., T. N. Parks, and E. W. Rubel (1986) Rapid dendritic atrophy following deafferentation: an EM morphometric analysis. Brain Res. 122: 1-13.
Bernays, R. L., Heeb, L., Cuenod, M., and Streit, P. (1988) Afferents to the rat red nucleus studied by means of D-〔3H〕aspartate, 〔3H〕choline and non-selective tracers. Neuroscience 26(2): 601- 619.
Billard, J.M., Daniel, H., and Pumain, R. (1991) Sensitivity of rubrospinal neurons to excitatory amino acids in the rat red nucleus in vivo. Neurosci. Lett. 134: 49-52.
Blinzinger, K. and Kreutzberg, G. (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Zeischrift fur Zellforschung 85: 145-157.
Bowe, C. M., Hildebrand, C., Kocsis, J. D., and Waxman, S. G. (1989) Morphological and physiological properties of neurons after long-term axonal regeneration: observations on chronic and delayed sequelae of peripheral nerve injury. J. Neurol. Sci. 91: 259-292.
Braun K., Scheich H., Schachner M., and Heizmann C. W. (1985a) Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch. I. Auditory and vocal motor systems. Cell Tiss. Res. 240, 101-115.
Braun K., Scheich H., Schachner M., and Heizmann C.W. (1985b) Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch. II. Visual system. Cell Tiss. Res. 240, 117-127.
Braun K., Scheich H., Schachner M., Heizmann C. W., and Hunziker, W. (1991) Parvalbumin and calbindin D-28k immunoreactivity as developmental markers of auditory and vocal motor nuclei of the zebra finch. Neuroscience 40, 853-869.
Burke, J. P. and Hablitz, J. L. (1994) Presynaptic depression of synaptic transmission mediated by activation of metabotropic glutamate receptors in rat neocortex. J. Neurosci. 14: 5120-5130.
Brown, L. T. (1974) Corticorubral projections in the rat. J. Comp. Neurol. 154: 149- 168.
Buhl, E. H. (1992) Intracellular Lucifer Yellow injection in fixed brain slices. In J. P. Bolam (Ed.), Experimental Neuroanatomy A Practical Approach, New York, Oxford University Press, pp. 187-209.
Carr, P. A., Yamamoto, T., Karmy, G., Baimbridge, K. G. and Nagy, J. I. (1989a) Parvalbumin is highly colocalized with calbindin D28k and rarely with calcitonin gene-related peptide in dorsal root ganglia neurons of rat. Brain Res. 497: 163- 170.
Carr P. A., Yamamoto T., Karmy G., Baimbridge K. G., and Nagy J.I. (1989b) Analysis of parvalbumin and calbindin D28k-immunoreactive neurons in dorsal root ganglia of rat in relation to their cytochrome oxidase and carbonic anhydrase content. Neuroscience 33, 363-371.
Caughell, K. A., and Flumerfelt, B. A. (1977) The organization of the cerebellorubral projection: An experimental study in the rat. J. Comp. Neurol. 176: 295- 306
Celio, M. R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35(2): 375- 475.
Celio M. R. and Heizmann C. W. (1981) Calcium-binding protein parvalbumin as a neuronal marker. Nature 293, 300-302.
Chard, P. S., Bleakman, D., Christakos, S., Fullmer, C. S., and Miller, R. J. (1993) Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurons. J. Physiol. 472: 341- 357.
Chen, D. H. (1978) Qualitative and quantitative study of synaptic displacement in chromatolyzed spinal motoneurons of the cat. J.Comp. Neurol. 177: 635- 664.
Chen, J.-R. and Tseng, G.-F (1997) Membrane properties and inhibitory connections of normal and upper cervically axotomized rubrospinal neurons in the rat. Neuroscience 79: 449-462.
Choi, D. W. (1994) Glutamate receptors and induction of exicitoxic neuronal death. Prog. Brain Res. 100: 47- 51.
Choi, D.W., Koh, J. and Peters, S. (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8: 185-196.
Choi, D.W. and Rothman, S. M. (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13: 171-182.
Collingridge, G. L. (1987) The role of NMDA receptors in learning and memory. Nature 330: 604-605.
Copani, A., casabona, G., Bruno, V., Caruso, A., Condorelli, D.F., Messina, A., Di Giorgi Gerevini, V., Pin, J-P., Kuhn, R., Knopfel, T., and Nicoletti, F. (1998) The metabotropic glutamate receptor mGlu5 controls the onset of developmental apoptosis in cultured cerebellar neurons. Eur. J. Neurosci. 10: 2173-2184.
Daniel, H., Billard, J. M., Angaut, P., and Batini, C. (1987) The interposito- rubrospinal system: Anatomical tracing of a motor control pathway in the rat. Neurosci. Res. 5: 87- 112.
Dassesse, D., Cuvelier, L., Krebs, C., Streppel, M., Guntinas-Lichius, O., Neiss, W. F., and Pochet, R. (1998) Differential expression of calbindin and calmodulin in motoneurons after hypoglossal axotomy. Brain Res. 786: 181- 188.
DeFelipe J., Hendry S. H. C., and Jones E. G. (1989) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res. 503, 49-54.
de Venecia R. K., Smelser C. B., Lossman S. D., and McMullen N. T. (1995) Complementary expression of parvalbumin and calbindin D-28k delineates subdivisions of the rabbit medial geniculate body. J. Comp. Neurol. 359, 595-612.
Dingledine, R. (1983) N-methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells. J. Physiol. (Lond.) 343: 385-405.
Eccles, J. C., Libet, B., and Young, R. R. (1958) The behavior of chromatolyzed motoneurons studied by intracellular recording. J. Physiol.(Lond) 143: 11-40.
Flumerfelt, B. A. (1978) Organization of the mammalian red nucleus and its interconnections with the cerebellum. Experientia 34: 1178-1180.
Flumerfelt, B. A. and Gwyn, D. G. (1974) Proceedings: The red nucleus of the rat: Its organization and interconnection. J. Anat. 118: 374
Fotuhi, M., Sharp, A.H., Glatt, C.E., Hwang, P.M., Von Krosigk, M., Snyder, S.H., Dauson, T.M. (1993) Differential localization of phosphoinositide-linked metabotropic glutamate receptor in rat brain. J. Neurosci. 13: 2001-2012.
George, E. B., Glass, J. D. and Griffin, J. W. (1995) Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J. Neurosci. 15: 6445- 6452.
Goodman, J. H., Wasterlain, C. G., Massarweh,W. F., Dean, E., Sollas, A. L., and Sloviter, R. S. (1993) Calbindin D-28k immunoreactivity and selective vulnerability to ischemia in the dentate gurus of the developing rat. Brain Res. 606: 309-314.
Graeber, M. B. and Kreutzberg, G. W. (1988) Delayed astrocyte reaction following facial nerve axotomy. J. Neurocytol. 17: 209- 220.
Greensmith, L., Hasan, H.I., and Vrbova, G. (1994) Nerve injury increases the susceptibility of motoneurons to N-methyl-D-aspartate-induced neurotoxicity in the developing rat. Neuroscience 58: 727-733.
Gwyn, D. G. and Flumerfelt, B. A. (1974) A comparison of the distribution of cortical and cerebellar afferents in the red nucleus of the rat. Brain Res. 69: 130- 135.
Hama, A.T., Unnerstall, J.R., Siegan, J.B., Sagen, J. (1995) Modulation of NMDA receptor expression in the rat spinal cord by peripheral nerve injury and adrenal medullary grafting. Brain Res. 687: 103-113.
Huisman, A. M., Kuypers, H. G. J. M., Conde, F., and Keizer, K. (1983) Collaterals of rubrospinal neurons to the cerebellum in rat: A retrograde fluorescent double labeling study. Brain Res. 264: 181-196.
Iacopino, A., Christakos, S., German, D., Sonsalla, P.K., and Altar, C. A. (1992) Calbindin-D-28k-containing neurons in animal models of neurodegeneration: possible protection from excitotoxicity. Mol. Brain Res. 13: 251- 261.
Jones E. G. and Henry S. H. C. (1989) Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur. J. Neurosci. 1: 222-246.
Kawaguchi Y., Katsumaru H. Kosaka T., Heizmann C. W., and Hama K. (1987) Fast spiking cells in rat hippocampus (CA1) regions contain the calcium binding protein parvalbumin. Brain Res. 416, 369-374.
Kawaguchi Y. and Kubota K. (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindin D28k-immunoreactive neurons in layer V of rat frontal cortex. J. Neurophysiol. 70, 387-396.
Kennedy, P. R. (1987) Light labeling of the red nucleus neurons following an injection of peroxidase-conjugated wheat germ agglutinin into the inferior olivary nucleus of the rat. Neurosci. Lett. 74: 262-268.
Kohr, G., Lambert C. E., and Mody I. (1991) Calbindin-D28k (CaBP) levels and calcium currents in acutely dissociated epileptic neurons. Exp. Brain Res. 85, 543-551.
Krebs, C., Neiss, W. F., Streppel, M., Guntinas-Lichius, O., Dassesse, D., Stennert, E., and Pochet, R. (1997) Axotomy induces transient calbindin D28k immunoreactivity in hypoglossal motoneurons in vivo. Cell Calcium 22: 367- 372.
Laiwand, R., Werman, R., and Yarom, Y. (1988) Electrophysiology of degenerating neurones in the vagal motor nucleus of the guinea pig following axotomy. J. Physiol.(Lond) 404: 749-766.
Linden, D.J., Dickinson, M.H., Smeyne, M., and Connor, J.A. (1991) A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7: 81-89.
Massion, J. (1967) The mammalian red nucleus. Physiol. Rev. 47: 383-436.
Massion, J. (1988) Red nucleus: Past and future. Behav. Brain Res. 28: 1-8.
Mattson, M. P., Rychlik, B., Chu, C., and Christakos, S. (1991) Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 6: 41- 51.
McDonald, J.W. and Johnson, M.V. (1990) Physiological and pathophysiological role of excitatory amino acids during central nervous system development. Brain Res. Rev. 15:41-70.
Mendell, L. M. (1984) Modifiability of spinal synapses. Physiol. Rev. 64: 260-324.
Mentis, G.Z., Greensmith, L. and Vrbova, G. (1993) Motoneurons destined to die are rescued by blocking NMDA receptor by MK-801. Neuroscience 54: 283-285.
Michaelis, E.K. (1998) Mocular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54: 369-415.
Miles, R. and Poncer, J.-C. (1993) Metabotroic glutamate receptors mediate a post-tetanic excitation of guinea-pig hippocampal inhibitory neurones. J. Physiol.(Lond.) 463: 461-473.
Moghaghan, D.T., Bridges, R.J. and Cotman, C.W. (1989) The excitatory amino acid receptors: their classses, pharmacology and distinct properties in the function of the central nervous system. Ann. Rev. Pharmacol. Toxicol. 29: 365-402.
Murray, H. M. and Gurule, M. E. (1979) Origin of the rubrospinal tract of the rat. Neurosci. Lett.14: 19-23.
Ozawa, S., Kamiya, H., and Tsuzuki, K. (1998) Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54: 581- 618.
Petralia, R.S., Wand, Y.-X., Mayat, E. and Wenthold, R. J. (1997) Glutamate receptor subunit-2-selective antibody shows a differential distribution of calcium-impermeable AMPA receptors among populations of neurons. J. Comp. Neurol. 385: 456-476.
Petralia, R.S. and Wenthold, R.J.(1992) Lilght and electron immunocytochemical localization of AMPA-selective glutamate receptor in the rat brain. J. Comp. Neurol. 318:329-354.
Petralia, R.S., Yokotani, N., Wenthold, R.J. (1994) Light and electron microscope distribution of the NMDA receptor subunit NR1 in the rat nervous system using a selective anti-peptide antibody. J. Neurosci. 14: 667-696.
Piehl, F., Tabar, G. and Culheim, S. (1995) Expression of NMDA receptor mRNAs in rat motoneurons is downregulated after axotomy. Eur. J. Neurosci. 7: 2101- 2110
Pin, J. -P. and Bockaert, J. (1995) Get receptive to metabotropic glutamate receptors. Curr. Opin. Neurobiol. 5: 342- 349.
Popratiloff, A., Kharazia, V. N., Weinberg, R. J., Laonipon, B. and Rustioni, A. (1996) Glutamate receptors in spinal motoneurons after sciatic nerve transection. Neuroscience 74: 953- 958.
Ramon y Cajal S (1928/1991) Degeneration and regeneration of the nervous system. New York: Hafner.
Ramano, C., Sesma, M.A., McDonald, C. T., O’malley, K., van Den Pol, A. N., and Olney, J. W. (1995) Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J. Comp. Neurol. 355: 455-469.
Reid, J. M., Gwyn, G. D., and Flumerfelt, B. A. (1975) A cytoarchitectonic and Golgi study of the red nucleus in the rat. J. Comp. Neurol. 162: 337- 362.
Reid, S.N., Romano, C., Hughes, T., and Dan, N.W. (1995) Immunohistochemical study of two phosphoinositide-linked metabotropic glutamate receptor (mgluR1 alpha and mGluR5) in the cat visual cortex before, during, and after the peak of the critical period for eye-specific connections. J. Comp. Neurol. 355: 470-477.
Resibois, A. and Rogers, J. H. (1992) Calretinin in rat brain: An immunohistochemical study. Neuroscience 46: 101- 134.
Roger, M., and Cadusseau, J. (1987) Anatomical evidence of a reciprocal connection between the posterior thalamic nucleus and the parvocellular division of the red nucleus in the rat: A combined retrograde and anterograde study. Neuroscience 21: 573-583.
Romano, C., Sesma, M.A., McDonald, C.T., O’Malley, K., van den Pol, A.N., Olney, J.W. (1995) Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J. Comp. Neurol. 355: 455-469.
Ruigrok, T. J. H. and Cella, F. (1995) Precerebellar nuclei and red nucleus. In G. Paxinos (Ed.), The Rat Nervous System, 2nd ed., Academic Press, San Diego, pp.277-308.
Sanner, C.A., Cunningham, T.J., and Goldberger, M.E. (1994) NMDA receptor blockade rescues Clarke’s and red nucleus neuron after spinal hemisection. J. Neurosci. 14: 6472-6480.
Shigemoto, R., Abe, T., Nomura, S., Nakanishi, S., Hirano, T. (1994) Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 12: 1245-1255.
Shigemoto, R., Nomura, S., Ohishi, H., Sugihara, H., Nakanishi, S, and Mizuno, N. (1993) Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci. Lett. 163: 53-57.
Sloviter R.S. (1989) Calcium-binding protein (Calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J. Comp. Neurol. 280, 183-196.
Solbach S. and Celio M. R. (1991) Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anat. Embryol. 184, 103-124.
Stefani, A., Pisani, A., Mercuri, N. B., and Calabresi, P. (1996) The modulation of calcium currents by the activation of mGluRs: functional implication. Mol. Neurobiol. 13: 81-95.
Sumner, B.E.H. and Sutherland, F.I. (1973) Quantative electron microscopy on the injured hypoglossal nucleus in the rat. J. Neurocytol. 2: 315- 328.
Svensson, M., Eriksson, P., Persson, J. K. E., Molander, C.,Arvidsson, J. and Aldskogius, H. (1993) The response of central glia to peripheral nerve injury. Brain Res. Bull. 30: 499- 506.
Tang, F. -R. and Sim, M. -K. (1997) Expression of glutamate receptor subunits 2/3 and 4 in the hypoglossal nucleus of the rat after neurectomy. Exp. Brain Res. 117: 453- 456.
Tseng, G. -F. and Hu, M.-E. (1996) Axotomy induces retraction of the dendritic arbor of adult at rubrospinal neurons. Acta Anat. 155: 184- 193.
Tseng G.-F., Lan C.-T., Shieh J.-Y., Wen C.-Y., Tan C.-K., and Ling E.-A. (1996a) Tracing in living CNS tissue slices with dextran. Neurosci. Protocols 50: 1-13.
Tseng, G. —F., Parada, I., and Prince, D. A. (1991) Double-labeling with rhodamine beads and biocytin: a technique for studying corticospinal and other projection neurons in vitro. J. Neurosci. Methods 37: 121- 131.
Tseng G.-F. and Prince D.A. (1993) Heterogeneity of rat corticospinal neurons. J. Comp. Neurol. 335: 92-108.
Tseng G.-F. and Prince D.A. (1996) Structural and functional alterations in rat corticospinal neurons after axotomy. J. Neurophysiol. 75: 248-267.
Tseng, G. -F., Shu, J., Huang, S.-J., and Wang, Y.-J. (1995) A time-dependent loss of retrograde transport ability in distally axotomized rubrospinal neurons. Anat. Embryol. 191: 243- 249.
Tseng, G. -F., Wang, Y.-J., and Hu, M.-E (1996b) Axotomy affects the retrograde labeling of cervical and lumbar-cord-projecting rubrospinal neurons differently. Anat. Embryol. 194: 457- 464.
Tseng, G.-F., Wang, Y.-J., and Lai, Q.-C. (1996c) Perineuronal microglial reactivity following proximal and distal axotomy of rat rubrospinal neurons. Brain Res. 715: 32-43.
Tseng, G.-F., Wang, Y.-J., and Lai, Q.-C. (1996d) Rubral astrocytic reactions to proximal and distal axotomy of rubrospinal neurons in the rat. Brain Res. 742: 115-128.
van den Pol, A.N., Kogelman, L., Ghosh, P., Liljelund, P., and Blackstone, C. (1994) Developmental regulation of the hypothalamic glutamate receptor mGluR1. J. Neurosci. 14: 3816-3834.
Wenthold, R.J., Yokotani, N., Doi, K., and Wada, K. (1992) Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies: evidence for a hetero-oligomeric structure in rat brain. J. Biol. Chem. 267: 501-507.
Wilson Horch, H. L. and Sargent, P. B. (1996) Effects of denervation on acetylcholine receptor clusters on frog cardiac ganglion neurons as revealed by quantitative laser scanning confocal microscopy. J. Neurosci. 16: 1720-1729.
Yamamoto T., Carr P. A., Baimbridge K. G., and Nagy J.I. (1989) Parvalbumin and calbindin D28k-immunoreactive neurons in the superficial layers of the spinal cord dorsal horn of rat. Brain Res. Bull. 23, 493-508.
Ziv, N. E. and Spira, M. E. (1995) Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range. J. Neurosci. 74(6): 2625- 1637.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊