跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林乾坤
研究生(外文):Chyan-Kune Lin
論文名稱:台北都會區室內與室外細粒徑氣懸微粒之相關性研究
論文名稱(外文):The Relationship between Fine Particles in Ambient Aerosols and Fine Particles in Typical Indoor Environments in Taipei
指導教授:王秋森王秋森引用關係張能復張能復引用關係李崇德李崇德引用關係
指導教授(外文):Chiu-Sen WangChung-Te LeeLen-Fu Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:110
中文關鍵詞:室內外細粒徑穿透因子追蹤劑正烷類
外文關鍵詞:indoor/outdoorfine particlespenetration factortracern-alkane
相關次數:
  • 被引用被引用:2
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究選擇環保署台北市中山空氣品質監測站附近的辦公大樓、學校教室、及住家進行室內外細粒徑氣膠微粒質量濃度(PM2.5)的測量,以評估室內外PM2.5的相關性。同時以微粒相中含碳數23至26之正烷類(C23~C26)作為汽機車微粒相排放物之追蹤劑以評估室內及室外細微粒中所含汽機車排放微粒的質量濃度,以了解室外細微粒對室內的貢獻量,並測量影響室內氣膠微粒濃度的二個因素-室內環境換氣率及細粒徑微粒沈積率,以進一步由室內氣膠數學模式推算出不同室內環境之穿透因子(penetration factor),並藉以估計室外細粒徑微粒穿透建物封(building envelope)進入室內之比例。
採樣地點為台北市中山國小二樓一間教室(學校教室)、中山區一間四樓公寓(住家)、台灣大學公衛新址一樓一間辦公室(辦公室A)、台灣大學基醫大樓三樓一間辦公室(辦公室B),採樣期間為1999年1月~4月,每次採樣時間為連續三天AM8:00~ PM4:00在室內外同時採樣,採樣儀器為Micro-environment Monitor (MEM)與Model 310 Universal Air Sampler(UAS),兩種採樣器之50%的切開粒徑(50% cut-off size)皆是2.5mm,每次採樣在室內外各使用1台MEM及在室外使用1台UAS,總樣本數為39個樣本。樣本經索氏萃取後,以GC/FID分析C23~C26正烷類及cholestane濃度。
同時本研究在台北市之林森南路地下道進行採樣,以瞭解機動車輛排氣之細粒徑微粒中C23、C24、C25、C26正烷類及cholestane濃度,藉以進一步推估大氣細粒徑微粒樣本中汽機車排放微粒所佔之比例。
結果顯示,不同地點之微粒相正烷類C23~C26濃度總和之室內外比值(I/O)介於0.51~0.94之間,其值與通風狀況與是否有空調過濾有關。不同地點微粒相正烷類C23~C26濃度佔PM2.5之質量百分率,其室內外比值皆大於1 (1.1 ~ 1.3),顯示室內細粒徑微粒中正烷類C23~C26所佔之質量百分率高於室外,即細粒徑微粒中汽機車排放所貢獻之比率室內高於室外,可能原因為C23~C26微粒相正烷類主要來源為汽機車微粒相排放,其粒徑分佈偏向較小之粒徑(0.1 ~ 1mm),故較不易沈降。各選定採樣點之細粒徑微粒之穿透因子以住家最高(平均值0.87),教室次之(平均值0.84),辦公室A再次之(平均值0.78),辦公室B最低(平均值0.59)。故住家、教室、辦公室A及辦公室B其室外細粒徑微粒穿透建物封進入室內之比例分別為87、84、78及59%。
如分別以C23~C26正烷類與cholestane作為汽機車微粒相排放物追蹤劑時,推估大氣細粒徑微粒中來自汽機車排放之貢獻分別為48.8%、19.4%。
The primary purpose of this study was to evaluate the relationship between ambient aerosols and indoor aerosols in typical Taipei buildings. We focused the study on fine particles (dp<2.5mm) and the contributions of vehicular exhausts to the fine fraction of ambient and indoor aerosols. Particulate n-alkanes with carbon numbers from 23 to 26 were used as tracers for vehicular exhausts. The air exchange rate and the particle deposition rate were determined for each indoor environment studied. The data were then used to caculate the penetration factor using an indoor aerosol model. The caculated penetration factor were then used to estimate the amount of ambient aerosol that penetraes the building envelope.
The study sites included a classroom which was on the 2nd floor, a 4th floor department, an office on the 1st floor(office A), and a 3rd floor office (office B). Sampling was conducted from January to April, 1999. We used a Model 310 Universal Air Sampler (UAS) and two Micro-environment Monitors (MEM) to collect fine particles on quartz fiber filters. In each sampling operations, one MEM placed indoor, one MEM and one UAS placed outdoor, were run simultaneously for 3 days, 8 hours each day from 8 a.m. to 4 p.m.. A total of 39 samples were collected in this study. After weighing, each sample was extracted with CH2Cl2 and then analyzed for n-alkane and cholestane by a Gas Chromatography/Flame Ionization Detector system.
We also collected samples in Lin-shen underpass to determine the concentration of the particulate n-alkanes with carbon numbers from 23 to 26 and cholestane concentration of the vehicular exhausts, and then estimated the fraction of vehicular exhausts in ambient aerosols.
The results show that the indoor/outdoor ratios of the total concentration of particulate n-alkanes with carbon numbers from 23 to 26 of four study sites ranged from 0.51~0.94. The ratios were affected by the ventilation rate and the infiltration efficiency of the air conditiones. The indoor/outdoor ratios of particulate n-alkanes (C23 to C26) were higher than the indoor/outdoor ratios of PM2.5, indicating that the particles from vehicular emission contributed a greater fraction in indoor fine particles than outdoor fine particles. It was probably becames that the particulate n-alkanes (C23 to C26) mainly came from vehicular exhausts, and the particle size was predominately in the range of 0.1~1mm, which had low deposition rates. The penetration factor at fine particles of four study sites was 0.87 (department)、0.84 (classroom)、0.78 (office A) and 0.59 (office B) respectively. The percentage of ambient aerosol that penetrated the building envelope of four study sites was therefore 87、84、78 and 59%, respectively.
We used particulate n-alkanes (C23 to C26) and cholestane for the vehicular exhausts tracers, and then estimated the fraction of contribution from vehicular exhausts in ambient aerosols was 48.8 and 19.4%.
第一章 緒論
1.1 前言
1.2 研究目的
第二章 文獻探討
2.1 室內與室外氣膠之相關性
2.2 汽機車微粒相排放物之追蹤劑
2.2.1 Steranes與Hopanes
2.2.2 正烷類
第三章 研究方法
3.1 室內外之氣膠微粒採樣
3.1.1 採樣方法
採樣設備
採樣介質與前處理方式
採樣期間
採樣地點
採樣程序
3.1.2 分析方法
分析儀器與條件
正烷類貯備溶液的配製
內標溶液的配製
樣本之處理
3.1.3 數據的計算
由檢量線計算萃取液中的正烷類及cholestane濃度
大氣中的正烷類及cholestane濃度的計算
3.1.4 方法偵測極限與萃取回收率
方法偵測極限之建立
萃取回收率試驗
3.2 地下道之懸浮微粒採樣
採樣方法
3.3 室內環境之換氣率與細粒徑微粒沈積率之測量
3.3.1 室內環境換氣率之測量
換氣率測量原理
SF6測量儀器
換氣率測量程序
換氣率之數據處理
3.3.2 細粒徑微粒沈積率之測量
沈積率測量原理
細粒徑微粒質量濃度測量儀器
細粒徑微粒沈積率之測量程序
細粒徑微粒沈積率之數據處理
第四章結果
4.1 正烷類與CHOLESTANE標準品之檢量線
4.2 方法偵測極限(METHOD DETECTION LIMIT, MDL)
4.3 標準品萃取回收率試驗
4.4 1998年冬季及1999年春季台北都會區選定採樣點之室內外細粒徑微粒採樣結果
4.5 1998年冬季及1999年春季台北都會區選定採樣點之室內外細粒徑微粒樣本中C23~C26正烷類濃度與PM2.5之室內外比值
4.6 1998年冬季及1999年春季台北都會區選定採樣點之細粒徑微粒之穿透因子
4.6.1室內環境換氣率之測量結果
4.6.2 細粒徑微粒沈積率之測量結果
4.6.3 1998年冬季及1999年春季台北都會區選定採樣點之細粒徑微粒之穿透因子
4.7 地下道之懸浮微粒採樣
第五章討論
5.1 1998年冬季及1999年春季台北都會區選定採樣點之室外細粒徑微粒以MEM採得樣本中PM2.5濃度與監測站之PM10濃度比較
5.2 1998年冬季及1999年春季台北都會區選定採樣點之室外細粒徑微粒分別以MEM及UAS採得樣本中C23~C26正烷類濃度之比值
5.3 1998年冬季及1999年春季台北都會區選定採樣點之室外細粒徑微粒樣本中C23~C26正烷類濃度及PM2.5與CHOLESTANE濃度之比值
5.4 1998年冬季及1999年春季台北都會區選定採樣點之室內外細粒徑微粒樣本中C23~C26正烷類濃度與PM2.5之室內外比值
5.5 1998年冬季及1999年春季台北都會區選定採樣點之室內外細粒徑微粒樣本中C23~C26正烷類濃度佔PM2.5之質量百分率
5.6 1998年冬季及1999年春季台北都會區選定採樣點之細粒徑微粒之穿透因子
5.7 大氣細粒徑微粒樣本中汽機車排放微粒所佔質量比例推估
第六章 結論與建議
參考文獻
1. 王秀娟(1993),台北都會區不同高度懸浮微粒濃度之變異及機動車輛對其之貢獻,國立台灣大學公共衛生研究所 碩士論文.
2. 王秋森(1993),氣膠技術學,國立台灣大學醫學院出版委員會,台北市.
3. Dockey, D. W. and Spengler, J. D. (1981). Indoor-iutdoor relationship of respirable sulfates and particles. Atmosphere Environment. 15, 335-343
4. Eichmann R., Ketseridis G., Schebeske, G.,Jaenicke. R., Hahm, J., Warneck, P. and Junge, C. (1980). n-Alkanes studies in the troposphere-Ⅱ: Gas and particulate concentrations in indian air. Atmosphere Environment. 14, 695-703.
5. Foreman, W. T., and Bidleman T. F. (1990). Semivolatile organic compounds in the ambient air of Denver, Colorado. Atmosphere Environment. 24A, 2405-2416.
6. Fransson, J. I. (1996). Particle deposition in ventilation air supplyducts. Proceeding of the 7th International conference on Indoor Air Quality and Climate, Nagoya, Japan, July 21-26, 2:717-722.
7. Fraser M. P., Cass, G. R., Simoneit B. R. T. and Rasmussen R. A. (1994). Air quality model evalution data for organic. 4. C2~C36 non-aromatic hydrocarbons, Environ. Sci. Technol. 31, 2356-2367.
8. Fraser M. P. Cass G. R. and Simoneit B. R. T. (1999). Particular organic compounds emitted from motor vehicle exhaust and in the urban atmosphere. Atmosphere Environment. 33, 2715-2724.
9. Funasaka, K., Miyanaki, T., Wanashina, M., Tamura, K., and Kuroda, K. (1996). Evalution of diesel exhaust particles in roadside private homes. Proceeding of the 7th International conference on Indoor Air Quality and Climate, Nagoya, Japan, July 21-26, 1:531-536.
10. Harrison, R. M., Jones, M. and Collins, G. (1999). Atmosphere Environment. 24B, 309-321.
11. Hildemann, L. M., Markowski, G. R., Cass, G. R. (1991). Chemical composition of emission from urban sources of fine organic aerosol. Environ. Sci. Technol. 25, 744-759.
12. Hunt, J. M., (1979). In petroleum Geochemistry and Geology; W. H. Freemen & Co.: San Francisco.
13. Jamriska, M. and Morawska, L. (1996). The effect of ventilation and filtration on reduction of indoor air exposure to submic pollutant particles - case study. Proceeding of the 7th International conference on Indoor Air Quality and Climate, Nagoya, Japan, July 21-26, 2:753-758.
14. Kadowaki, S. (1994). Characterization of Carbonaceous Aerosols in Nagoya Urban Area. 2.Behavior and Origin of Particulate n-Alkanes. Environ. Sci. Technol. 28,129-135.
15. Kim, Y. S., Jang, J. H., and Shin, E. B. (1992). Elemental composition of indoor and outdoor respirable particles in Seoul office buildings. Proceeding of the 7th International conference on Indoor Air Quality and Climate, Nagoya, Japan, July 21-26, 1996, 1:949-952.
16. Koutrakis, P., Briggs S. L. K., and Leaderer, B. P. (1992). Source Apportionment of indoor aerosols in Suffolh and Onondaga countries. Environ. Sci. Technol. 26,521-527.
17. Lioy, P. J., Waldman, J. M.,Buckley, T., Butler, J., and Pietarinen, C. (1990). The personal, indoor and outdoor concentrations of PM10 measured in an industrial community during winter. Atmosphere Environment. 24B, 57-66.
18. Quackenboss, J. J,,Lebowitz, M. D.and Crutchfield, C D. (1989). Indoor-outdoor relationship for particulate matter: exposure classifications and heath effects. Environment International. 15, 353-360.
19. Raunemaa, T., Kulmala, M., Saari, H.,Olin, M., and Kulmala, M. H. (1989). Indoor air aerosol model: transport indoors and deposition of fine and coarse particles. Aerosol Science and Technology. 11, 11-25.
20. Rogge, W. F., Hildemann, L. M., Mazurek, M. A., and Cass, G. R. (1993). Sources of organic aerosol. 2. noncatalyst and catalyst-equipped automobile and heavy duty diesel trucks. Environ. Sci. Technol. 27, 636-651.
21. Schaucher, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmosphere Environment 30, 3837-3855.
22. Simoneit, B. R. T. (1985). Application of molecular marker analysis to vehicular exhaust for source reconciliations. Int. J. Environ. Anal. Chem. 22, 203-233.
23. Thatcher, T. L., Layton, D. W. (1995). Deposition repustion, and penetration of particles within a residence. Atmosphere Environment29, 1487-1497.
24. Tung, T. C. W., Chao, C. Y. H. and Burnett, J. (1999). Atmosphere Environment. 29, 881-893.
25. Wallance, L. (1996). Indoor particles: a review. J. Air & Waste Manage. Assoc.. 46, 98-126.
26. Wilson, W. E. and Suh, H. H. (1997). Fine particles and coarse particles: concentration relationship revelant to epidemiologic studies. J. Air & Waste Manage. Assoc.. 47, 1238-1249.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊