(44.192.10.166) 您好!臺灣時間:2021/03/06 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳毓華
研究生(外文):Chen Yu Hwa
論文名稱:細胞內及細胞外pH值改變對乙醯膽鹼之釋放及氨基酸類神經傳遞物質受體之影響
論文名稱(外文):Regulation of Acetylcholine Release and Activity of Amino Acid Neurotransmitter Receptors by Intracellular and External pH Changes
指導教授:符文美符文美引用關係
指導教授(外文):Fu Wen Mei
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:261
中文關鍵詞:乙醯膽鹼之釋放細胞內鹼化細胞內酸化細胞外pH值改變NMDA受體non-NMDA受體GABA受體
外文關鍵詞:Acetylcholine releaseIntracellular alkalinizationCytosolic acidificationExternal pH changesNMDA receptornon-NMDA receptorGABA receptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在許多組織或是可興奮的細胞(excitable cell)都有維持細胞內及細胞外pH值恆定的機制。而細胞內及細胞外pH值的改變對許多細胞功能來說是一個很重要的調節因子;因為許多催化酵素或是組成離子通道的蛋白都受pH的改變而影響。近二十年來,隨著測量細胞內pH值技術的發展,使我們對細胞內pH值的調控有更深入的瞭解。
在生理或病理狀態下,我們常見神經系統細胞內及細胞外pH值的改變,此等pH值改變對神經功能之影響卻仍不甚清楚。在論文的第一部分,我們探討了細胞內及細胞外pH值的改變對胚胎期神經末梢釋放ACh的調節。當我們在與神經形成突觸的肌細胞形成whole-cell recording並將膜電位箝制在-60mV時,可記錄到突觸前神經釋放的ACh在肌細胞所引起的內向電流。在本實驗中我們以氯化銨(NH4Cl)來鹼化細胞,而細胞內的pH值則是以對氫離子(H+)敏感的BCECF來測定。15 mM的NH4Cl可造成約0.77個pH單位的鹼化,但SSC frequency僅稍微減少一些;而洗掉NH4Cl造成細胞內0.85到1.0個pH單位的反彈性酸化現象(rebound acidificaiton)卻明顯地促進SSC frequency。另一種酸化細胞的方法是以弱有機酸如Na acetate或Na propionate完全取代Ringer溶液中的NaCl也可以造成細胞內的酸化,我們並將細胞外溶液之pH值滴定至6.6以增加acetate或propionate的uncharged form,使之進入細胞的量增加而促進細胞酸化的程度。當細胞外pH 7.6的Ringer溶液被置換成pH 6.6 或pH 8.6的Ringer溶液時,對細胞內的pH並無顯著影響,分別為0.14及0.11個pH單位。但以Na acetate或Na propionate取代pH 6.6 Ringer溶液中的NaCl約造成細胞內1.2~1.6個pH單位的酸化,並且明顯地增加SSC frequency;但較強的有機酸如Na isethionate、Na methylsulfate及Na glucuronate則因charged form分子較多無法通過細胞膜,因而酸化細胞的效果不明顯,對SSC frequency亦無顯著之影響。然而細胞內酸化對電刺激引發的ACh釋放(evoked ACh release)卻有不同的調節作用。細胞內鹼化促進但細胞內酸化卻抑制evoked ACh的釋放。由於鈣離子(Ca2+)在神經傳遞物質的釋放過程中扮演著重要的調節角色,因此我們利用Ca2+的探測劑:Fura-2 AM繼續探討細胞內酸化對細胞內Ca2+的影響。以Na acetate取代NaCl酸化細胞會增加細胞外Ca2+進入細胞內,同時也促進Ca2+從細胞內的Ca2+儲存池(Ca2+ pool)釋放出來,因而導致細胞內Ca2+濃度的增加。而高鉀溶液增加[Ca2+]i的作用在細胞內酸化的情況下則是被抑制。因此我們得到的結論是:在胚胎期運動神經,細胞內酸化促進自發性ACh release,卻抑制電刺激所引發的ACh release,但細胞外酸化對此二者的作用則均不明顯。至於細胞外鹼化則稍微減少自發性ACh release,但卻稍稍促進evoked-ACh release。
已知NMDA及non-NMDA受體與ACh受體一起存在於Xenopus細胞培養中的運動神經末梢,glutamate可經由此突觸前NMDA及non-NMDA受體增加細胞內Ca2+濃度而增強自發性ACh釋放。而在哺乳類動物的中樞神經,興奮性的glutamate在生理及病理上都扮演著重要的調節角色。在生理上,胚胎期神經的分化發育、突觸形成及成熟個體的學習、記憶如長期增益現象(LTP)均與glutamate受體有密切關係。在病理上,癲癇、中風及神經萎縮性病變如退化性老年癡呆症(Alzheimer''s disease),亨庭頓氏手足舞蹈症(Huntington''s desease)及側索硬化性肌萎縮症(amyotrophic lateral sclerosis)的成因也與glutamate受體有關。因此我們繼續探討細胞內、外pH值的改變對NMDA以及non-NMDA受體性質的影響。此外,由於有報告指出抑制性的神經傳遞物質- GABA在胚胎發育的早期亦扮演著興奮性的角色,因此我們也將探討細胞內、外pH值改變對GABA受體的影響。
實驗中我們分三方面來評估細胞內、外pH值改變對Xenopus運動神經NMDA受體性質的影響。分別是1)NMDA受體促進突觸前神經末梢自發性ACh釋放之作用,2)NMDA增加細胞內Ca2+的作用,以及3)NMDA在神經元細胞體上直接引發的電流反應。我們同樣以Na acetate或Na propionate完全取代Ringer溶液中的NaCl,但細胞外pH仍維持在7.6。以此取代方法可造成細胞內0.2至0.4個pH單位的酸化。我們發現當以pH 6.6 Ringer溶液酸化細胞外時會抑制NMDA增加SSC frequency的作用,而以Na acetate取代NaCl酸化細胞內時則促進NMDA的作用;另一方面,細胞外鹼化(pH 8.6 Ringer溶液)促進,但以NH4Cl使細胞內鹼化則對NMDA的作用沒有明顯的影響。由於NMDA受體是一個可容Ca2+通過的離子管道,因此藉由測量細胞內Ca2+濃度的變化也可以瞭解細胞內外pH值的改變對NMDA受體的影響。NMDA增加[Ca2+]i的作用可被細胞外鹼化及細胞內酸化促進,而細胞外酸化則抑制之;至於細胞內鹼化則不影響NMDA的作用。更直接的證據就是我們在神經細胞體上灌流NMDA所引發的電流也被細胞外鹼化及細胞內酸化促進,但卻被細胞外酸化所抑制;細胞內鹼化則依然不影響NMDA所引發的電流。
至於non-NMDA受體,當細胞外鹼化至pH 8.6時促進AMPA及kainate受體所引起的電流。以NH4Cl造成的細胞內鹼化則只促進kainate受體所引起的電流;而細胞內及細胞外酸化對AMPA及kainate受體均無顯著的影響。與NMDA受體相較,AMPA及kainate受體對細胞內、外pH值改變的敏感度較低,也因此NMDA受體在興奮性傳遞物質所造成的神經毒性上扮演著較為重要的角色。
而在GABA受體方面,當我們以gramicidin形成perforated patch而不改變細胞內Cl-濃度的情況下,若將細胞膜箝制在-60mV、並灌流GABA時,可在神經細胞體記錄到一個內向的電流;這表示GABA在胚胎發育早期扮演著去極化的興奮性角色。由於GABA受體是一個容Cl-通透的離子管道,以Na acetate取代NaCl而酸化細胞的同時也改變了細胞外氯離子的濃度,進而影響GABA受體的平衡電位(equilibrium potential),因此我們以洗去NH4Cl之後產生的rebound acidification來探討細胞內酸化對GABA及muscimol-induced currents的影響。實驗結果顯示:當細胞外鹼化及細胞內酸化時明顯地促進GABA及muscimol-induced currents;反之,細胞外酸化及細胞內鹼化對GABA及muscimol-induced currents則無顯著作用。
綜合以上對NMDA、AMPA、kainate及GABA受體的實驗結果顯示:細胞外鹼化及細胞內酸化促進興奮性GABAA受體的活性,與NMDA受體活性受調節的方向一致;但GABAA受體與NMDA受體對細胞外酸化的敏感度卻大不相同。相較於NMDA受體對細胞外酸化的敏感性,細胞外pH 7.6降到6.6的酸化程度對於GABAA、AMPA及kainate受體的影響都不顯著。然而,細胞外鹼化都可促進NMDA、AMPA、kainate及GABAA受體的活性。此結果顯示這些ligand-gated受體的extracellular domain可能有部分的相似性。
It has been commonly assumed that both extracellular pH (pHo) and intracellular pH (pHi) in various excitable cells and tissues are well regulated by homeostatic mechanisms. Changes in pHo and pHi tend to exert profound effects on the properties of cells, because enzymes and ion channels are clearly affected by changes in pH. In the last two decades, however, several techniques for measuring pHi have evolved to study how pHi is regulated.
Both intra- and extralcellular pH will be changed under physiological or pathological conditions. However, the functions of such pHo and pHi changes are still unknown. We study the effects of intracellular pH changes on the ACh release and cytoplasmic Ca2+ concentration at developing motoneurons in Xenopus nerve-muscle co-cultures in the first part of the article. Spontaneous and evoked ACh release of motoneurons was monitored by using whole cell voltage-clamped myocytes (Vh=-60 mV). Intracellular alkalinization with 15 mM NH4Cl slightly reduced the frequency of spontaneous synaptic currents (SSCs). However, cytosolic acidification following withdrawal of extracellular NH4Cl caused a marked and transient increase in spontaneous ACh release. Another method of cytosolic acidification was used in which NaCl in Ringer solution was replaced with weak organic acids. The increase in spontaneous ACh release parallel the level of intracellular acidification resulting from addition of these organic acids. Acetate and propionate but not isethionate, methylsulfate and glucuronate caused an incerease in intracelluar pH and a marked increase in spontaneous ACh release. Impulse-evoked ACh release was slightly augmented by intracellular alkalinization and inhibited by cytosolic acidification. Cytosolic acidification was accompanied by an elevation in the cytoplasmic Ca2+ concentration ([Ca2+]i), resulting from both external Ca2+ influx and intracellular Ca2+ mobilization. In contrast, the increase in [Ca2+]i induced by high K+ was inhibited by cytosolic acidification. We conclude that cytosolic acidification regulates spontaneous and evoked ACh release differentially in Xenopus motoneurons, increasing spontaneous ACh release but inhibiting evoked ACh release.
We previously found that glutamate, which is also reported to be co-released from some cholinergic nerve terminals, markedly increased the frequency of spontaneous synaptic currents at embryonic neuromuscular synapses via the activation of NMDA and non-NMDA receptors. L-Glutamate also plays an important role as an excitatory synaptic neurotransmitter in the mammalian CNS. Activation of glutamate receptors serve many functions in neuronal development, synaptic plasticity, and acquisition of memory. They also contribute to the pathology of epilepsy, stroke, and neurodegenerative disorders such as Alzheimer''s disease, amyotrophic lateral sclerosis, and Huntington''s disease. In the second part, we further investigate the effects of both external and intracellular pH changes on the functional responses of presynaptic NMDA receptors. Local perfusion of NMDA at synaptic regions increased the SSC frequency via the activation of presynaptic NMDA receptors. A decrease in pHo from 7.6 to 6.6 reduced NMDA responses to 23% of the control, and an increase in pHo from 7.6 to 8.6 potentiated the NMDA responses in increasing SSC frequency. The effect of NMDA on intracellular Ca2+ concentration ([Ca2+]i) was also affected by pHo changes: external acidification inhibited and alkalinization potentiated [Ca2+]i increases induced by NMDA. Intracellular pH changes of single soma were measured by ratio fluorometric method using 2,7-bis (carboxyethyl)-5,6-carboxyflurescein (BCECF). Cytosolic acidification was used in which NaCl in Ringer solution was replaced with weak organic acids. Acetate and propionate but not methylsulfate substitution caused intracellular acidification and potentiated NMDA responses in increasing SSC frequency, intracellular free Ca2+, and NMDA-induced currents. On the other hand, cytosolic alkalinization with NH4Cl did not significantly affect these NMDA responses. These results suggest that the functions of NMDA receptors are modulated by both pHo and pHi changes, which may occur in some physiological or pathological conditions.
Local perfusion of AMPA and kainate also generated inward currents in the neuronal soma, which were also potentiated by extracellular alkalinization to pH 8.6 and not affected by external acidification to pH 6.6. However, cytosolic acidification by replacing NaCl in Ringer solution with weak organic acid sodium acetate did not affect kainate- and AMPA-induced currents, whereas, intracellular alkalinization enhanced kainate-induced current by 20%. Compared with NMDA receptors, AMPA and kainate receptors are much less sensitive to the modulation by both external and cytosolic pH changes. Therefore, NMDA receptor appears to play a prominent role in excitatory amino acid-mediated neurotoxicity.
g-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian CNS. However, GABAergic synaptic transmission appears earlier than that of glutamatergic transmission in the early development of the CNS. Thus, GABA acting at GABAA receptors depolarizes and excites immature neurons in the mammalian CNS and developing motoneuron. We also investigated the effects of cytosolic and extracellular pH changes on GABA-induced currents by using perforated whole-cell recordings.
Local application of GABA and muscimol generated inward currents and depolarization in the neuronal soma. GABA- and muscimol-induced currents were enhanced by ~20% when the pHo was increased from pH 7.6 to 8.6 but not significantly affected by external acidification from pH 7.6 to 6.6. Cytosolic alkalinization with NH4Cl did not significantly affect GABA- and muscimol-induced currents. However, withdrawal of NH4Cl from bathing solution caused rebound acidification of cytosolic pH and increased GABA and muscimol-induced currents.
Our data suggest that GABA-mediated currents were affected by external alkalinization and cytosolic acidification, which are in parallel to that of NMDA responses. In contrary, GABA responses are more resistant to external acidification, which is quite different from that of NMDA responses. Changes in H+ within the range of pH 6.6 to 7.6, both AMPA and kainate receptors were also not affected by acidic pHo. In view of our data, it seems that GABA, AMPA and kainate receptors are less sensitive to external acidic shifts than NMDA receptors. However, NMDA, AMPA, kainate and GABA receptors are all potentiated by external alkalinization from pH 7.6 to 8.6. This result suggests that these ligand-gated receptors might show some similarity in extracellular domain.
封面
目錄
縮寫表
中文摘要
英文摘要
第一章.緒論
一)pH值改變對細胞功能的影響
二)L-Glutamate受體的生理角色、特性及其分類
三)GABA受體之生理角色、特性及其分類
第二章.細胞內酸化對胚胎期運動神經末梢ACh釋放之調簡
Regulation of acetylcholine release by intracellular acidification of developingmotoneurons in Xenopus cell cultures
第三章.細胞內細胞外pH值的改變對胚胎期運動神經末梢NMDA受體反應性之調節
Regulation of presynaptic NMDA responses by external and intracellular pH changes at developing neuromuscular synapses
第四章.細胞內及細胞外pH值的改變對胚胎期運動神經GABA及non-NMDA受體性值之調節
Regulation of GABAand non-NMDA glutamate receptors by cytosolic and extracelluar pH changes
第五章.結論及未來展望
著作
其他
Ahmed, Z. and Connor, J. A. (1980) Intracellular pH changes induced by calcium influx during electrical activity in molluscan neurons. J. Gen. Physiol. 75, 403-426
Aizenman, E., Lipton, S. A. and Loring, R. H. (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2, 1257-1263
Albers, G. W., Goldberg, M. P. and Choi, D. W. (1992) Do NMDA antagonists prevent neuronal injury? Yes. Arch. Neurol. 49, 418-420.
Albrecht, B. E. and Darlison, M. G. (1995) Localization of the r1-and r2-subunit messenger RNAs in chick retina by in situ hybridization predicts the existence of g-aminobutyric acid type C receptor sybtypes. Neurosci. Lett. 189, 155-158
Alger, B. E. and Nicoll, R. A. (1982) Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J. Physiol. 328, 125-141
Altmann, H., Ten-Bruggencate, C., Pickelmann, P. and Steinberg, R. (1976) Effects of glutamate, aspartate and two presumed antagonists on feline rubrospinal neurons. Pflugers Arch. Gen. Phusiol. 364, 249-255
Anantharam, V., Panchal, R. G., Wilson, A., Kolchine, V. V., Treistman, S. N. and Bayley, H. (1992) Combinatorial RNA splicing alters the surface charge on the NMDA receptor. FEBS Lett. 305, 27-30
Andersen, P. and Curtis, D. R. (1964) The excitation of thalamic neurons by acetylcholine. Acta Physiol. Scand. 61, 85-99
Aram, J. A. and Lodge, D. (1987) Epileptiform activity induced by alkalosis in rat neocortical slices: block by antagonists of N-methyl-D-aspartate. Neurosci. Lett. 83, 345-350.
Artola, A. and Singer, W. (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330, 649-652
Ault, B., Evans, R. H., Francis, A. A., Oakes, D. J. and Watkins, J. C. (1980) Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparation. J. Physiol. (Lond) 307, 413-428
Avoli, M. (1992) Synaptic activation of GABAA receptors causes a depolarizing potential under physiological conditions in rat hippocampal pyramidal cells. Eur. J. Neurosci. 4, 16-26
Baer, M. F., Kleinschmidt, A., Gu, Q. and Singer, W. (1990) Disruption of experience-dependent modifications in striate cortex by infusion of an NMDA receptor agonist. J. Neurosci. 10, 909-925
Baird, D. H., Trenkner, E. and Mason, C. A. (1996) Arrest of afferent axon extension by target neurons in vitro is regulated by the NMDA receptor. J. Neurosci. 16, 2642-2648
Balazs, R., Dahl, D. and Harwood, J. R. (1966) Subcellular distribution of enzymes of glutamate metabolism in rat brain. J. Neurochem. 13, 897-905
Balazs, R., Jorgensen, O. S. and Hack, N. (1988) N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27, 437-451
Balcar, J. V. and Jonston, G. A. R. (1972) The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices. J. Neurochem. 19, 2657-2666
Balchen, T. and Diemer, N. H. (1992) The AMPA antagonist, NBQX, protects against ischemia-induced loss of cerebellar Purkinje cells. NeuroReport 3, 785-788.
Balestrino, M. and Somjen, G. G. (1988) Concentration of carbon dioxide, interstitial pH and synaptic transmission in hippocampal formation of the rat. J. Physiol.(Lond) 396, 247-266.
Barker, J. L. and Ransom, B. R. (1978) Amino acid pharmacology of mammalian central neurons grown in tissue culture. J. Physiol. (Lond) 280, 331-354
Baskys, A., Bernstein, N. K., Barolet, A. W. and Carlen, P. L. (1990) NMDA and quisqualate reduce a calcium-dependent potassium current by a protein kinase-mediated mechanism. Neurosci. Lett. 112, 76-81
Beal, M. F. (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31, 119-130.
Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J. and Nartin, F. B. (1986) Replication of the neurochemical characteristics of Huntington''s disease by quinolinic acid. Nature 321, 168-171
Bekkers, J. M. and Stevens, C. F. (1989) NMDA and non-NMDA receptors are colocalized at individual excitatory synapses in cultured rat hippocampus. Nature 341, 230-233
Belmonte, C., Gallar, J., Pozo, M. A. and Rebollo, I. (1991) Excitation by irritant chemical substances of sensory afferent units in the cat''s cornea. J. Physiol. (Lond) 437, 709-725
Ben-Air, Y., Khazipov, R. Leinekugel, X., Caillard, O. and Gaiarsa, J. L. (1997) GABAA, NMDA and AMPA receptors: a developmentally regulated "menage a trois". Trends Neurosci. 20, 523-529
Ben-Ari, Y., Cherubini, E., Corradetti, R. and Gaiarsa, J. L. (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurons. J. Physiol. (Lond) 416, 303-325
Bennett, J. A. and Dingledine, R. (1995) Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop. Neuron 14, 373-384
Benveniste, M. and Mayer, M. L. (1991) Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys. J. 59, 560-573
Benveniste, M. and Mayer, M. L. (1993) Multiple effects of spermine on N-methyl-D-aspartic acid receptors of rat cultured hippocampal neurons. J. Physiol. (Lond) 464, 131-163
Benveniste, M., Clements, J., Vyklicky, L. and Mayer, M. L. (1990) A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurons. J. Physiol. (Lond) 428, 333-357
Berninger, B., Marty, S., Zafra, F., Da-Penha-Berzaghi, M., Thoenen, H. and Lindholm, D. (1995) GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development 121, 2327-2335
Bettler, B., Boulter, J., Hermans-Borgmeyer, I., O''Shea-Greenfield, A., Deneris, E., Moll, C., Brogmeyer, U., Hollmann, M. and Heinemann, S. (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583-595
Bettler, B., Kaupmann, K. and Bowery, N. (1998) GABAB receptors: drugs meet colnes. Curr. Opin. Neurobiol. 8, 345-350
Biggio, G., Concas, A. and Costa, E., eds (1992) GABAergic Clinical Aspects, Raven Press
Blanton, M.G., Lo Turco, J. J. and Kriegstein, A. R. (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J. Neurosci. Methods 30, 203-210.
Blatz, A. L. (1980) Chemical modifiers and low internal pH block inward rectifier K channels. Fed. Proc. 39, 2073
Bliss, T. V., Douglas, R. M., Errington, M. L. and Lynch, M. A. (1986) Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anesthetized rats. J. Physiol. (Lond) 377, 391-408
Bonanno, G., Fassio, A., Schmid, G. Severi, P., Sala, R. and Raiteri, M. (1997) Pharmacologically distinct GABAB receptors that mediate inhibition of GABA and glutamate release in human neocortex. Br. J. Pharmacol. 120, 60-64
Bormann, J. (1988) Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci. 11, 112-116.
Bormann, J. and Feigenspann, A. (1995) GABAC receptors. Trends Neurosci. 18, 515-519
Boron, W. F. and DeWeer, P. (1976) Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J. Gen. Physiol. 67, 91-112
Boulter, J., Hollmann, M., O''Shea-Greenfield, A., Hartley, M., Deneris, E., Maron, C. and Heinermann, S. (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249, 1033-1037
Bowery, N. G. (1982) Bacolfen: 10 years on. Trends Pharmacol. Sci. 3, 400-403
Bowery, N. G. (1989) GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol. Sci. 10, 401-407
Bowery, N. G. (1993) GABAB receptor pharmacology. Annu. Rev. Pharmacol. Toxicol. 33, 109-147
Brewer, G. J. and Cotman, C. W. (1989) NMDA receptor regulation of neuronal morphology in cultured hippocampal neurons. Neurosci. Lett. 99, 268-273
Brodwick, M. S. and Eaton, D. C. (1978) Sodium channel inactivation in squid axon is removed by high internal pH or tyrosine-specific reagents. Science 200, 1494-1496
Brose, N., Gasic, G. P., Vetter, D. E., Sullivan, J. M. and Heinemann, S. F. (1993) Protein chemical characterization and immunocytochemical localization of the NMDA receptor subunit NMDA R1. J. Biol. Chem. 268, 22663-22671
Brown, H. M. and Meech, R. W. (1979) Light induced changes on internal pH in a barnacle photoreceptor, and the effect of internal pH on the receptor potential. J. Physiol. (Lond) 297, 73-93
Buchan, A. M., Li, H. and Pulsinelli, W. A. (1991) The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats. J. Neurosci. 11, 1049-1056.
Burnashev, N., Khodorova, A., Jonas, P., Helm, P. J., Wisden, W., Monyer H., Seeburg, P. H. and Sakmann, B. (1992a) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 246, 1566-1570
Burnashev, N., Monyer, H., Seeburg, P. H. and Sakmann, B. (1992b) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8, 189-198
Burnashev, N., Schoepfer, R.,Monyer, H., Ruppersberg, J. P.,Guther, W., Seeburg, P. H. and Sakmann, B. (1992c) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257, 1415-1419
Busa, W. B. and Nuccitelli, R. (1984) Metabolic regulation via intracellular pH. Am. J. Physiol. 246, R409-438
Carlson, B. X., Elster, L. and Schousboe, A. (1998) Pharmacological and functional implications of developmentally-regulated changes in GABAA receptor subunit expression in the cerebellun. Eur. J. Pharmacol. 352, 1-14
Cass, A., Finkelstein, A. and Krespi, V. (1970) The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphoterincin B. J. Gen. Physiol. 56, 100-124
Castellano, C. and McGaugh, J. L. (1989) Retention enhancement with post-training picrotoxin: lack of state dependency. Behavi. Neural Biol. 51, 165-170
Chang, Y., Wang, R., Barot, S. and Weiss, D. S. (1996) Stoichiometry of a recombinant GABAA receptor. J. Neurosci. 16, 5415-5424
Chen, G., Trombley, P. Q. and van den Pol, A. N. (1995) GABA receptors precede glutamate receptors in hypothalamic development; differential regulation by astrocytes. J. Neurophysiol. 74, 1473-1484
Chen, G., Trombley, P. Q. and van den Pol, A. N. (1996) Excitatory actions of GABA in developing hypothalamus. J. Physiol. (Lond) 494, 451-464
Chen, J. C. and Chesler, M. (1992) Modulation of extracellular pH by glutamate and GABA in rat hippocampal slices. J. Neurophysiol. 67, 29-36.
Chen, L. and Huang, Y. M. (1993) Dynorphin actions of NMDA-activated currents in trigeminal neurons- a single channel analysis. Soc. Neurosci. Abstr. 19, 1157
Chen, Y. H., Wu, M. L. and Fu, W. M. (1998a) Regulation of acetylcholine release by intracellular acidification at developing motoneurons in Xenopus cell cultures. J. Physiol. (Lond) 507.1, 41-53
Chen, Y. H., Wu, M. L. and Fu, W. M. (1998b) Regulation of presynaptic NMDA response by external and intracellular pH changes at developing neuromuscular synapses. J. Neurosci. 18, 2982-2990.
Cherubini, E., Gaiarsa, J. L. and Ben-Ari, Y. (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci. 14, 515-519
Chesler, M. (1990) The regulation and modulation of pH in the nervous system. Prog. Neurobiol. 34, 401-427
Chesler, M. and Chan, C. Y. (1988) Stimulus-induced extracellular pH transients in the in vitro turtle cerebellum. Neuroscience 27, 941-948.
Chesler, M. and Kaila, K. (1992) Modulation of pH by neuronal activity. Trends Neurosci. 15, 396-402
Choi, D. W. (1988) Glutamate neurotoxicity and disease of the nervous system. Neuron 1, 623-634.
Choi, D. W. (1990) Cerebral hypoxia: some new approaches and unanswered questions. J. Neurosci. 10: 2493-2501.
Choi, D. W. (1992a) Bench to bedside: the glutamate connection. Science 258, 241-243
Choi, D. W. (1992b) Excitotoxic cell death. J. Neurobiol. 23, 1261-1276.
Choi, D. W. and Rothman, S. M. (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Ann. Rev. Neurosci. 13, 171-182
Cline, H. T. and Constantine-Paton, M. (1990) NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection. J. Neurosci. 10, 1197-1216
Cline, H. T., Debskim E. A. and Constantine-Paton, M. (1987) N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes. Proc. Nalt. Acad. Sci. U. S. A. 84, 4342-4345
Cohen, I. and van der Kloot, W. (1976) The effects of pH changes on th frequency of miniature end plate potentials at the frog neuromuscular junction. J. Physiol.(Lond) 262, 401-414
Collingridge, G. L., Herron, C. E. and Lester, R. A. J. (1988) Synaptic activation of N-methyl-D-aspartate receptors in the Schaffer collateral-commissural pathway of rat hippocampus. J. Physiol. (Lond) 399, 283-300.
Connor, J. A., Tseng, H. Y. and Hockberger, P. E. (1987) Depolarization- and transmitter-induced changes in intracellular Ca2+ of rat cerebellar granule cells in explant culture. J. Neurosci.7, 1384-1400
Cotman, C. W., Monaghan, D. T. and Ganong, A. H. (1988) Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Ann. Rev. Neurosci. 11, 61-80
Courtney, M. J., Lambert, J. J. and Nicholls, D. G. (1990) The interactions between plasma membrane depolarization and glutamate receptor activation in the regulation of cytoplasmic free calcium in cultured cerebellar granule cells. J. Neurosci. 10, 3873-3879
Coyle, J. T. and Enna, S. J. (1976) Neurochemical aspects of the ontogenesis of GABAergic neurons in the rat brain. Brain Res. 111, 119-133
Cull-Candy, D. G. and Usowicz, M. M. (1987) Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325, 525-528
Cull-Candym S. G., Howe, J. R. and Ogden, D. C. (1988) Noise and single channels activated by excitatory amino acids in rat cerebellar granule neurons. J. Physiol. (Lond) 400, 189-222
Cunningham, M. D. and Enna, S. J. (1996) Evidence for pharmacologically distinct GABAB receptors associated with cAMP production in rat brain. Brain Res. 720, 220-224
Curtis, D. R. and Watkins, J. C. (1963) Acidic amino acids with strong excitatory actions on mammalian neurons. J. Physiol. (Lond) 166, 1-14
Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Tebecis, A. K. and Watkins, J. C. (1972) Excitation of mammalian central neurons by acidic amino acids. Brain Res. 41, 283-301
Curtis, D. R., Gynther, B. D., Lacey, G. and Beattie, D. T. (1997) Baclofen: reduction of presynaptic calcium influx in the cat spinal cord in vivo. Exp. Brain Res. 113, 520-533
Curtis, D. R., Phillis, J. W. and Watkins, J. C. (1960) The chemical excitation of spinal neurons by certain acidic amino acids. J. Physiol. (Lond) 150, 656-682
Cutting, G. R., Lu, L., O''Hara, B. F., Kasch, L. M. Montrose Rafizadeh, C., Donovan, D. M., Shimada, S., Antonarakis, S. E., Guggino, W. B., Uhl, G. R. and Kazazian, H. H. (1991) Cloning of the g-aminobutyric acid (GABA) r1 cDNA: a GABA receptor subunit highly expressed in the retina. Proc. Natl. Acad. Sci., U. S. A. 88, 2673-2677
Davies, C. H., Starkey, S. J., Pozza, M. F.and Collingridge, G. L. (1991) GABA autoreceptors regulate the induction of LTP. Nature 349, 609-611
Davies, J. and Watkins, J. C. (1979) Selective antagonism of amino acid-induced and synaptic excitation in the cat spinal cord. J. Physiol. (Lond) 297, 621-635
Davies, J., Evans, R. H., Francis, A. A. and Watkins, J. C. (1979) Excitatory amino acid receptor and synaptic excitation in the mammalian central nervous system. J. Physiol. (Paris) 75, 641-645
Davies, J., Francis, A. A., Jones, A. W. and Watkins, J. C. (1981) 2-Amino-5-phosphonovalerate (2-APV) a potent and selective antagonist of amino acid-induced and synaptic excitation. Neurosci. Lett. 21, 77-81
Deisz, R. A., Billard, J. M. and Zieglgansberger, W. (1997) Presynaptic and postsynaptic GABAB receptors of neocortical neurons of the rat in vitro: differences in pharmacology and ionic mechanisms. Synapse 25, 62-72
del Castillo, J., Nelson, T. E. and Sanchez, V. (1962) The mechanism of increased acetylcholine sensitivity of skeletal muscle in low pH solutions. J. Cel. Comp. Physiol. 59, 35-44
Dingledine, R., Hume, R. I. And Heinemann, S. F. (1992) Structural determinants of barium permeation and rectification in non-NMDA glutamate receptor. J. Neurosci. 12, 4080-4087
Dingledine, R., McBain, C. J. and McNamara, J. O. (1990) Excitatory amino acid receptors in epilepsy. Trends Pharmacol. Sci.11, 334-338.
Dixon, D. B., Takahashi, K. I. and Copenhagen, D. R. (1993) L-Glutamate suppresses HVA calcium current in catfish horizontal cells by raising intracellular proton concentration. Neuron 11, 267-277.
Djamogoz, M. (1995) Diversity of GABA receptors in the vertebrate outer retina. Trends Neurosci. 18, 118-120
Dong, C. J., Picaud, S. A. and Werblin, F. S. (1994) GABA transporters and GABAC-like receptors on catfish cone- but not rod-driven horizontal cells. J. Neurosci. 14, 2648-2658
Drapeau, P. and Nachshen, D. A. (1988) Effects of lowering extracellular and cytosolic pH on calcium fluxes, cytosolic calcium levels, and transmitter release in presynaptic nerve terminals isolated from rat brain. J. Gen. Physiol. 91, 305-315
Drejer, J., Larson, O. M. and Schousboe, A. (1982) Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47, 259-269
Drew, C. A. and Johnston, G. A. R. (1992) Bicuculline-and baclofen-insensitive g-aminobutyric acid binding to rat cerebellar membranes. J. Neurochem. 58, 1087-1092
Drew, C. A., Johnston, G. A. R. and Weatherby, R. P. (1984) Bicuculline-insensitive GABA receptors: studies on the binding of (-)-baclofen to rat cerebellar membranes. Neurosci. Lett. 52, 317-321
Durand, G. M., Gregor, P., Zheng, X., Bennett, M. V., Uhl, G. R. and Zukin, R. S. (1992) Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc. Nalt. Acad. Sci. U. S. A. 89, 9359-9363
Dutar, P. and Nicoll, R. A. (1988a) A physiological role for GABAB receptors in the central nervous system. Nature 332, 156-158
Dutar, P. and Nicoll, R. A. (1988b) Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron 1, 585-591
Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I. and Heinemann, S. (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351, 745-748
Endres, W., Ballanyi, K., Serve, B. and Grafe, P. (1986) Excitatory amino acids and intracellular pH in motoneurons of the isolated spinal cord. Neurosci. Lett. 72, 54-58.
Endres, W. K., Ballanyi, K., Serve, B. and Grafe, P. (1986) Excitatory amino acids and intracellular pH in motoneurons of the isolated spinal cord. Neurosci. Lett. 72, 54-58
Evanns, R. H., Evans, S. J., Pook, P. C. and Sunter, D. C. (1987) A comparison of excitatory amino acid antagonist acting at primary afferent C fibres and motoneurons of the isolated spinal cord of the rat. Br. J. Pharmacol. 91, 531-537
Evans, R. H., Francis, A. A., Hunt, K., Oakes, D. J. and Watkins, J. C. (1979) Antagonism of excitatory amino acid-induced responses and of synaptic excitation in isolated spinal cord of the frog. Br. J. Pharmacol. 67, 591-603
Feigenspan, A. and Bormann, J. (1998) GABA-gated Cl- channels in the rat retina. Prog. Retinal Eye Res. 17, 99-126
Feigenspan, A., Wassle, H. and Bormann, J. (1993) Pharmacology of GABA receptor Cl- channels in rat retinal bipolar cells. Nature 361, 159-163
Feigenspna, A. and Bormann, J. (1994) Differential pharmacology of GABAA and GABAC receptors on rat retinal bipolar cell. Eur. J. Pharmacol. 288, 97-104
Fiszman, M. L., Novotny, E. A., Lange, G. D. and Barker, J. L. (1990) Embryonic and early postnatal hippocampal cells respond to nanomolar concentrations of muscimol. Dev. Brain Res. 53, 186-193
Forsythe, I. D. and Westbrook, G. L. (1988) Slow excitatory postsynaptic currents mediated by N-methyl-D-aspartate receptors on cultured mouse central neurons. J. Physiol. (Lond) 396, 515-533.
Foster, A. C. and Fagg, G. E. (1984) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res. Rev. 7, 103-164.
Fox, K. and Daw, N. W. (1993) Do NMDA receptors have a critical function in visual cortical plasticity? Trends Neurosci. 16, 116-122
Fu, W. M. and Huang, F. L. (1994) L-type Ca2+ channel is involved in the regulation of spontaneous transmitter release at developing neuromuscular synapses. Neuroscience 58, 131-140
Fu, W. M., Liou, J. C., Lee, Y. H. and Liou, H. C. (1995) Potentiation of neurotransmitter release by activation of presynaptic glutamate receptors at developing neuromuscular synapses of Xenopus. J. Physiol.(Lond) 489, 813-823
Fujiwara, N., Abe, T., Endoh, H., Warashina, A. and Shimoji, K. (1992) Changes in intracellular pH of mouse hippocampal slices responding to hypoxia and/or glucose depletion. Brain Res. 572, 335-339.
Fulton, B. P., Miledi, R. and Takahashi, T. (1980) Electrical synapses between motor neurons in the spinal cord of newborn rat. Proc. R. Soc. Lond. B 208, 115-120
Gaiarsa, J. L., Tseeb, V. and Ben-Ari. Y (1995) Postnatal development of pre- and postsynaptic GABAB-mediated inhibitions in the CA3 hippocampal region of the rat. J. Neurophysiol. 73, 246-255
Galindo, A. (1969) Effects of procaine, pentobarbital and halothane on synaptic transmission in the central nervous system. J. Pharmacol. Exp. Ther. 169, 181-185
Gallagher, J. P., Nakamura, J. and Shinnock-Gallagher, P. (1983) The effects of temperature, pH and Cl- pump inhibitors on GABA responses recorded from cat dorsal root ganglia. Brain Res. 267, 249-259.
Geppetti, P., Tramontana, M., Patacchini. R., del Bianco, E., Santicioli, P. and Maggi, C. A. (1990) Neurochemical evidence for the activation of the "efferent" function of capsaicin-sensitive nerves by lowering the pH in the guinea-pig urinary bladder. Neurosci. Lett. 114, 101-106
Geppetti, P., del Bianco, E., Patacchini. R., Santicioli, P., Maggi, C. A. and Tramontana, M. (1991) Low pH-induced release of calcitonin gene-related peptide from capsaicin-sensitive sensory nerves: mechanism of actions and biological response. Neuroscience 41, 295-301
Gerson, D. F. and Burton, A. C. (1977) The relation of cycling of intracellular pH to mitosis in the acellular slime mold Physarum polycephalum. J. Cell Physiol. 91, 297-315
Ghavis, P., Shinozaki, H., Bockaert, J. and Fagni, L. (1994) The metabotropic glutamate receptor types II-III inhibit L-type calcium channels via a pertussis toxin-sensitive G-protein in cultured cerebellar granule cells. J. Neurosci. 14, 7067-7076
Gibb, J. and Colquhoun, D. (1992) Activation of N-methyl-D-aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus. J. Physiol. (Lond) 456, 143-179
Giffard, R. G., Monyer, H., Christine, C. W. and Choi, D. W. (1990) Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res. 506, 339-342.
Gilbertson, T. A., Scobey, R. and Wilson, M. (1991) Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. Science Rep. 251, 1613-1615
Gill, R. (1994) The pharmacology of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate antagonists and their role in cerebral ischemia. Cerebrovasc.Brain Metab. Rev. 6, 225-256.
Gillies, R. J. and Deamer, D. W. (1979) Intracellular pH changes during the cell cycle in Tetrahymena. J. Cell Physiol. 100, 23-32
Giulian, D., Vaca, K. and Noonan, C. A. (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250, 1593-1596
Goodchild, C. S. (1993) GABA receptors and benzodiazepines. Br. J. Anesthesia. 71, 127-133
Gruol, D. L., Barker, J. L., Huang, L. Y., MacDonald, J. F. and Smith, T. G. Jr (1980) Hydrogen ions have multiple effects on the excitability of cultured mammalian neurons. Brain Res. 183, 247-252.
Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) A new generation of calcium indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440-3450
Habbard, J. O., Jones, S. F. and Landau, E. M. (1968) On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals. J. Physiol.(Lond) 194, 355-380
Hahm, J. O., Langdon, R. B. and Sur, M. (1991) Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature 351, 568-570
Halasy, K. and Somogyi, P. (1993) Distribution of GABAergic synapses and their targets in the dentate gyrus of rat : a quantitative immunoelectron microscopic analysis. J. Hirnforsch. 34, 299-308
Haldeman, S., Huffman, R. D., Marshall, K. D. and McLennan, H. (1972) The antagonism of the glutamate-induced and synaptic excitations of thalamic neurons. Brain Res. 39, 419-425
Halonen, T., Pitkanen, A., Saano, B. and Riekkinen, P. J. (1991) Effects of vigabatrin (gamma-vinyl GABA) on neurotransmission-related amino acid and on GABA and benzodiazepine receptor binding in rats. Epilepsia 32, 242-249
Hamberger, A., Chiang, G. H., Nylen, E. S., Scheff, S. W. and Cotman, C. W. (1979) Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brain Res. 168, 513-530
Hamberger, A., Chiang, G., Nylen, E. S., Scheff, S. W. and Cotman, C. W. (1978) Stimulus evoked increase in the biosynthesis of the putative neurotransmitter glutamate in the hippocampus. Brain Res. 143, 549-555
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell free membrane patches. Pflugers Arch. 391, 85-100.
Hara, M., Inoue, M., Yasukura, T., Ohnishi, S., Mikami, Y. and Inagaki, C. (1992) Uneven distribution of intracellular Cl- in rat hippocampal neurons. Neurosci. Lett. 143, 135-138
Harrison, N. L. (1990) On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J. Physiol. (Lond) 422, 433-446
Hartley, Z. and Dubinsky, J. M. (1993) Changes in intracellular pH associated with glutamate excitotoxicity. J. Neurosci. 13, 4690-4699
Hayashi, T. (1954) Effects of sodium glutamate on the nervous system. Keio. J. Med. 3, 183-192
Herb, A., Burnachev, N., Werner, P., Sakmann, B., Wisden, W. and Seeburg, P. H. (1992) The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8, 775-785
Hestrin, S., Nicoli, R. A., Perkel, D. J. and Sah, P. (1990) Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J. Physiol. (Lond) 422, 203-225.
Hladky, S. B. and Haydon, D. A. (1984) Ion movements in gramicidin channels. Curr. Top Membr. Transp. 21, 327-372
Hollmann, M., Boulter, J., Maron, C., Beasley, L.,Sullivan, J., Pecht, G. and Heinemann, S. (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943-954
Hollmann, M. and Heinemann, S. (1994) Cloned glutamate receptors. Ann. Rev. Neurosci. 17: 31-108..
Hollmann, M., Hartley, M. and Heinemann, S. (1991) Ca2+ permeability of KA-AMPA-gated glutamate channels depends on subunit composition. Science 253, 1028-1031
Hollmann, M., Maron, C. and Heinemann, S. (1994) N-glucosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13, 1331-1343
Hollmann, M., O''Shea-Greenfield, A., Rogers, S. W. and Heinemann, S. (1989) Clonging by functional expression of a member of the glutamate receptor family. Nature 342, 643-648
Hosie, A. M., Aronstein, K., Sattelle, D. B. and ffrench-Constant, R. H. (1997) Molecular biology of insect neuronal GABA receptors. Trends Neurosci. 20, 578-583
Hosli, L., Andres, P. F. and Hosli, E. (1973) Ionic mechanisms underlying the depolarization of L-glutamate on rat and human spinal neurons in tissue culture. Experientia 29, 1244-1247
Howe, J. R., Cull-Cnady, S. G. and Colquhoun, D. (1994) Currents through single glutamate receptor channels in outside-out patches from rat cerebellar granule cell. J. Physiol.(Lond) 432, 143-202
Hubbard, J. O., Jones, S. F. and Landau, E. M. (1968) On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals. J. Physiol.(Lond) 194, 355-380
Huettner, J. E. (1990) Glutamate receptor channels in rat DRG neurons: activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron 5, 255-266
Iino, M., Ozawa, S. and Tsuzuki, K. (1990) Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurons. J. Physiol. (Lond) 424, 151-165
Iino, S., Hayashi, H., Saito, H., Tokuno, H. and Tomita, T (1994) Effects of intracellular pH on calcium currents and intracellular calcium ions in the smooth muscle of rabbit portal vein. Exp. Physiol. 79, 669-680
Im, W. B., Pregenzer, J. F., Binder, J. A., Dillon, G. H. and Alberts, G. L. (1995) Chloride channel expression with the tandem construct of a6-b2 GABAA receptor subunit requires a monomeric subunit of a6 or g2. J. Biol. Chem. 270, 26063-26066.
Inoue, M., Hara, M., Zeng, X. T., Hirose, T., Ohnishi, S., Yasukura, T., Uriu, T., Omori, K., Minato, A. and Inagaki, C. (1991) An ATP-driven Cl- pump regulates Cl- concentrations in rat hippocampal neurons. Neurosci. Lett. 134, 75-78
Irisawa, H. and Sato, R. (1986) Intra- and extracellular actions of proton on the calcium current of isolated guinea pig ventricular cells. Circ. Res. 59, 348-355
Irwin, R. P., Lin, S. Z., Long, R. T. and Paul S. M. (1994) N-methyl-D-aspartate induces a rapid, reversible, and calcium-dependent intracellular acidosis in cultured fetal rat hippocampal neurons. J. Neurosci. 14, 1352-1362
Isaacson, J. S., Sokis, L. M. and Nicoll, R. A. (1993) Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10, 165-175
Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M. and Nakanishi, S. (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268, 2836-2843
Isokawa, M. and Levesque, M. F. (1991) Increased NMDA responses and dendritic degeneration in human epileptic hippocampal neurons in slices. Neurosci. Lett. 132, 212-216
Israel, M., Lesbats, B. and Bruner, J. (1993) Glutamate and acetylcholine release from cholinergic nerve terminals, a calcium control of the specificity of the release mechanism. Neurochem. Int. 22, 53-58.
Ito, H., Vereecke, J. and Carmeleit, E. (1992) Intracellular protons inhibit inward rectifier K+ channel of guinea pig ventricular cell. Pflugers Arch. 422, 2802-286
Ito, M. (1989) Long-term depression. Ann. Rev. Neurosci. 12, 85-102
Jahr, C. E. and Stevens, C. F. (1987) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325, 522-525
Jahr, C. E. and Yoshioka, K. (1986) Ia afferent excitation of motoneurons in the in vitro new-born rat spinal cord is selectively antagonized by kynurenate. J. Physiol. (Lond) 370, 515-530
Jarolimek, W., Misgeld, U. and Lux, H. D. (1989) Activity dependent alkaline and acid transients in guinea pig hippocampal slices. Brain Res. 505, 225-232.
Johnston, G. A. R. (1996) GABAC receptors: relatively simple transmitter-gated ion channels? Trends Pharmacol. Sci. 17, 319-323
Johnston, G. A. R., Curtis, D. R., Beart, P. M., Game, C. J. A., McCulloch, R. M. and Twitchin, B. (1975) Cis- and trans-4-aminocrotonic acid as GABA agonist of restricted conformation. J. Neurochem. 24, 157-160
Johnston, G. A. R., Curtis, D. R., Davies, J. and McCulloch, R. M. (1974) Spinal interneuron excitation by conformationally restricted analogues of L-glutamic acid. Nature 248, 804-805
Jonas, P., Racca, C., Sakmann, B., Seeburg, P. H. and Monyer, H. (1994) Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281-1289
Jones, K. A. and Baughman, R. W. (1991) Both NMDA and non-NMDA subtypes of glutamate receptors are concentrated at synapses on cerebral cortical neurons in culture. Neuron 7, 593-603
Kaibara, M. and Kameyama, M. (1988) Inhibition of the calcium channel by intracellular protons in single ventricular myocytes of the guinea pig. J. Physiol. (Lond) 403, 621-640
Kaila, K. (1994) Ionic basis of GABAA receptor channel function in the nervous system. Prog. Neurobiol. 42, 489-537.
Kaila, K. and Voipio, J. (1987) Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330, 163-165
Kaila, K., Paalasmaa, P., Taira, T. and Voipio, J. (1992) pH transients due to monosynaptic activation of GABAA receptors in rat hippocampal slices. NeuroReport 3, 105-108
Kaku, D. A., Goldberg, M. P. and Choi, D. W. (1991) Antagonism of non-NMDA receptors augments the neuroprotective effect of NMDA receptor blockade in cortical cultures subjected to prolonged deprivation of oxygen and glucose. Brain Res. 554, 344-347.
Kanner, B. I. and Sharon, I. (1978) Active transport of L-glutamate by membrane vesicles isolated from rat brain. Biochemistry 17. 3949-3953
Karuri, A. R., Dobrowsky, E. and Tannock, I. F. (1993) Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment. Br. J. Cancer 68, 1080-1087
Katzka, D. A. and Morad, M. (1989) Properties of calcium channels in guinea pig gastric myocytes. J. Physiol.(Lond) 413, 175-197
Kawajiri, S. and Dingledine, R. (1993) Multiple structural determinants of voltage-dependent magnesium block in recombinant NMDA receptors. Neuropharmacology 32, 1203-1211
Keinanen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T. A., Sakmann, B. and Seeburg, P. H. (1990) A family of AMPA-selective glutamate receptors. Science 249, 556-560
Kleinberg, M. E. and Finkelstein, A. (1984) Single-length and double-length channels formed by nystatin in lipid bilayer membranes. J. Membr. Biol. 80, 257-269
Kleinschmidt, A., Bear, M. F. and Singerm W. (1987) Blockade of NMDA receptors disrupts experience dependent plasticity of kitten striate cortex. Science 238, 355-358
Klement, W. and Arndt, J. O. (1991) Br. J. Anaesthes. 66, 189-195
Koltchine, V. V., Anantharam, V., Bayley, H. and Treistman, S. N. (1996) Alternative splicing of the NMDAR1 subunit affects modulation by calcium. Mol. Brain Res. 39, 99-108
Komuro, H. and Rakic, P. (1993) Modulation of neuronal migration by NMDA receptors. Science 260, 95-97
Krishek, B. J., Amato, A., Connolly, C. N., Moss, S. J. and Smart, T. G. (1996) Proton sensitivity of the GABAA receptor is associated with the receptor subunit composition. J. Physiol. (Lond) 492, 431-443.
Krnjevic, K. and Phillis, J. W. (1963) Iontophoretic studies of neurons in the mammalian cerebral cortex. J. Physiol. (Lond) 165, 274-305
Kyrozis, A. and Reichling, D. B. (1995) Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration. J. Neurosci. Methods 57, 27-35
Lachica, E. A., Kato, B. M., Lippe, W. R. and Ribel, E. W. (1998) Glutamtergic and GABAergic agonists increase [Ca2+]i in avian cochlear nucleus neurons. J. Neurobiol. 37, 321-337
Landau, E. M. and Nachshen, D. A. (1975) The interaction of pH and divalent cations at the neuromuscular junction. J. Physiol.(Lond) 251, 775-790
Landau, E. M., Gavish, B., Nachshen, D. A. and Lotau, I. (1981) pH dependence of the acetylcholine receptor channel: a species variation. J. Gen. Physiol. 77, 647-666
Leinekugel, X., Tseeb, V., Ben-Ari. Y and Bregestovski, P. (1995) Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices. J. Physiol. (Lond) 487.2, 319-329
Lester, R. A. and Jahr, C. E. (1990) Quisqualate receptor-mediated depression of calcium currents in hippocampal neurons. Neuron 4, 741-749
Levi, G., Patrizio, M. and Gallo, V. (1991) Release of endogenous and newly synthesized glutamate and of other amino acids induced by non-N-methyl-D-aspartate receptor activation in cerebellar granule cell cultures. J. Neurochem. 56, 199-206
Liou, H. C., Yang, R. S. and Fu, W. M. (1996) Potentiation of spontaneous acetylcholine release from motor nerve terminals by glutamate in Xenopus tadpoles. Neuroscience 75, 325-331.
Lipton, S. A., Sucher, N. J., Kaiser, P. K. and Dreyer, E. B. (1991) Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. Neuron 7, 111-118
Liu, H., Wang, H., Sheng, M., Jan, L. Y., Jan, Y. N. and Basbaum, A. I. (1994) Evidence for presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn. Proc. Nalt. Acad. Sci. U. S. A. 91, 8383-8387
Logan, W. J. and Snyder, S. H. (1972) High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues. Brain Res. 42, 413-431
Lomeli, H., Wisden, W., Kohler, M., Keinanen, K., Sommer, B. and Seeburg, P. H. (1992) High-affinity kainate and domoate receptors in rat brain. FEBS Lett. 307, 139-143
LoTurco, J. J., Owens, D. F., Heath, M. J., Davis, M. B. and Krisegstein, A. R. (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287-1298
Lucas, D. R. and Newhouse, J. P. (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch. Ophthalmol. 58, 193-201
Luhmann, H. J. and Prince, D. A. (1991) Postnatal maturation of the GABAergic system in rat neocortex. J. Neurophysiol. 65, 247-263
Lukasiewicz, P. D., Maple, B. R and Werblin, F. S. (1994) A novel GABA receptor on bipolar cell terminals in the tiger salamander retina. J. Neurosci. 14, 1202-1212
Lukasiewicz, P. D. and Werblin, F. S. (1994) A novel GABA receptor modulates synaptic transmission from bipolar to ganglion and amacrine cells in the tiger salamander retina. J. Neurosci. 14, 1213-1223
Ma, W., Behar, T. and Barker, J. L. (1992) Transient expression of GABA immunoreactivity in the developing rat spinal cord. J. Comp. Neurol. 325, 271-290
MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. and Barker, J. L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321, 519-522.
MacDonald, J. F. and Wojtowicz, J. M. (1980) Two conductance mechanisms activated by applications of L-glutamic, L-aspartic, DL-homocysteic, N-methyl-D-aspartic, and DL-kainic acids to cultured mammalian central neurons. Can. J. Physiol. Pharmacol. 58, 1393-1397
MacDonald, J. W., Bhattacharyya, T., Sensi, S. L., Lobner, D., Ying, H. S., Canzoniero, L. M. T. and Choi, D. W. (1998) Extracellular acidity potentiates AMPA receptor-mediated cortical neuronal death. J. Neurosci. 18, 6290-629.
Macdonald, R. L. and Olsen, R. W. (1994) GABAA receptor channels. Ann. Rev. Neurosci. 17, 569-602.
Macdonald, R. L. and Twyman, R. E. (1992) Kinetic properties and regulation of GABAA receptor channels. Ion Channels 3, 315-343
Malcangio, M. and Bowery, N. G. (1996) GABA and its receptors in the spinal cord. Trends Pharmacol. Sci. 17, 457-462
Mallart, A. and Mologo, J. (1978) The effects of pH and curare on the time course of endplate currents at the neuromuscular junction of the frog. J. Physiol. (Lond) 276, 343-352
Maragos, W. F., Greenamyre, J. T., Penny, J. B. and Young, A. B. (1987) Glutamate dysfunction in Alzheimer''s diseases: a hypothesis. Trends Neurosci. 10, 65-68
Martina, M., Strata, F. and Cherubini, E. (1995) Whole cell and single channel properties of a new GABA receptor transiently expressed in the hippocampus. J. Neurophysiol. 73, 902-906
Marty, A. and Finkelstein, A. (1975) Pores formed in lipid bilayer membrane by nystatin: difference in its one-side and two sided action. J. Gen. Physiol. 65, 515-526
Mattson, M. P. and Hauser, K. F. (1991) Neurotransmitters as developmental signals. Neurochem. Int. 19, 1-15
Mattson, M. P. and Kater, S. B. (1987) Calcium regulation of neurite elongation and growth cone motility. J. Neurosci. 7, 4034-4043
Mattson, M. P. and Kater, S. B. (1989) Excitatory and inhibitory neurotransmitters in the generation and degeneration of hippocampal neuroarchitecture. Brain Res. 478, 337-348
Mattson, M. P., Guthrie, P. B. and Kater, S. B. (1988) Intracellular messengers in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosci. Res. 21, 447-464
Mayer, M. L. and Westbrook, G. L. (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurons. J. Physiol. (Lond) 394, 501-527
Mayer, M. L., Vyklicky, L. and Clements, J. (1989) Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338, 425-427
Mayer, M. L., Westbrook, G. L. and Guthrie, P. B. (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 309, 261-263
McBain, C. J. and Mayer, M. L. (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol. Rev. 74, 723-760
McDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. and Barker, J. L. (1986) NMDA receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321, 519-522
McGaugh, J. L. (1989) Dissociating learning and performance: drug and hormone enhancement of memory storage. Brain Res. Bull. 23, 339-345
McGaugh, J. L., Castellano, C. and Brioni, J. (1990) Picrotoxin enhances latent extinction of conditioned fear. Behavi. Neurosci. 104, 264-267
McGurk, J. F., Bennett, M. V. and Zukin, R. S. (1990) Polyamines potentiate responses of N-methyl-D-aspartic acid receptors expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. U. S. A. 87, 9971-9974
McLennan, H., Huffman, R. D. and Marshall, K. C. (1968) Patterns of excitation of thalamic neurons by amino-acids and by acetylcholine. Nature 219, 387-388
Meech, R. W. and Thomas, R. C. (1977) The effect of calcium injection on the intracellular sodium and pH of snail neurons. J. Physiol. (Lond) 265, 867-879
Meech, R. W. and Thomas, R. C. (1987) Voltage-dependent intracellular pH in Helix aspersa neurons. J. Physiol. (Lond) 390, 433-452
Meister, B., Arvidsson, U., Zhang, X., Jacobsson, G., Villar, M. J. and Hokfelt, T. (1993) Glutamate transporter mRNA and glutamate-like immunoreactivity in spinal motoneurones. NeuroReport 5: 337-340.
Meldrum, B. (1985) Possible therapeutic applications of antagonists of excitatory amino acid transmitters. Clin. Sci. 68,113-122
Meldrum, B. S. (1992) Excitatory amino acids in epilepsy and potential novel therapies. Epilepsy Res. 12: 189-196.
Meldrum, B. S. (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44, 14-23
Michaelis, E. K. (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54, 369-415
Mironov, S. L. and Lux, H. D. (1991) Cytoplasmic alkalinization increases high-threshold calcium current in chick dorsal root ganglion neurons. Pflugers Arch. 419, 138-143
Misgeld, U., Deisz, R. A., Dodt, H. U. and Lux, H. D. (1986) The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science 232, 1413-1415
Mody, I., DeKoninck, Y., Otis, T. S. and Soltesz, I. (1994) Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 17, 517-525
Mohler, H., Patel, A. J. and Balazs, R. (1974) Metabolic compartmentation in the brain: metabolism of a tricarboxylic acid cycle intermediate, (1,4-14C)succinate, after intracerebral administration. J. Neurochem. 23, 1281-1289
Monaghan, D. T., Bridges, R. J. and Cotman, C. W. (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Ann. Rev. Pharmacol. Toxicol. 29, 365-402.
Monaghan, D. T., Holets, V. R., Toy, D. W. and Cotman, C. W. (1983) Anatomical distributions of four pharmacologically distinct [3H]-L-glutamate binding sites. Nature 306, 176-179.
Moody, W. J. and Hagiwara, S. (1982) Block of inward rectification by intracellular H+ in immature oocytes of the starfish Mediaster aequalis. J. Gen. Physiol. 79, 115-130
Moody, W. Jr. (1984) Effects of intracellular H+ on the electrical properties of excitable cells. Ann. Rev. Neurosci. 7, 257-278
Mori, H., Masaki, H., Yamakura, T. and Mishina, M. (1992) Identification by mutagenesis of a Mg2+-block site of the NMDA receptor channel. Nature 358, 673-675
Mueller, A. L., Taube, J. S. and Schwartzkroin, P. A. (1984) Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to gamma-aminobutyric acid in rabbit hippocampus studied in vitro. J. Neurosci. 4, 860-867
Murphy, S. N. and Miller, R. J. (1988) A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons. Eur. J. Pharmacol. 184, 8737-8741
Nadler, J. V., Vaca, K. W., White, W. F., Lynch, G. S. and Cotman, C. W. (1976) Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents. Nature 260, 538-540
Naito, S. and Ueda, T. (1983) Adenosine triphosphate-dependent uptake of glutamate into protein I-associated vesicles. J. Biol. Chem. 258, 696-699
Nakanishi, N., Axel, R. and Shneider, N. A. (1992) Alternative splicing generates functionally distinct N-methyl-D-aspartate receptors. Proc. Nalt. Acad. Sci. U. S. A. 89, 8552-8556
Nayeem, N., Green, T. P., Martin, I. L. and Barnard, E. A. (1994) Quaternary structure of the native GABAA receptor determined by eletron microscopic image analysis. J. Neurochem. 62, 815-818.
Nedergaard, M., Kraig, R. P., Tanabe, J. and Pulsinelli, W. A. (1991) Dynamics of interstitial and intracellular pH in evolving brain infarct. Am. J. Physiol. 260, R581-R588
Nicoletti, F., Magri, G., Ingrao, F., Bruno, V., Catania, M. V., Ell''Albani, P., Condorelli, D. F. and Avola, R. (1990) Excitatory amino acids stimulate inositol phospholipid hydrolysis and reduce proliferation in cultured astrocytes. J. Neuorchem. 27, 771-777
Nicoletti, F., Wrobelwski, J. T., Fadda, E. and Costa, E. (1988) Pertussis toxin inhibits signal transduction at a specific metabotropic glutamate receptor in primary cultures of cerebellar granule cells. Neuropharmacology 27, 551-556
Nicoll, R. A. (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241, 545-551
Nilsson, M., Eriksson, P. S., Ronnback, L., and Hansson, E. (1993) GABA induces Ca2+ transients in astrocytes. Neuroscience 54, 605-614
Nistri, A. and Sivilotti, L. (1985) An unusual effect of g-aminobutyric acid on synaptic transmission of frog tectal neurons in vitro. Br. J. Pharmacol. 85, 917-922
Novelli, A., Reilly, J. A., Lysko, P. G. and Henneberry, R. C. (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451, 205-212
Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. and Prochiantz, Z. (1984) Magnesium gates glutamate activated channels in mouse central neurons. Nature 307, 462-465
O''Callaghan, J. F. X., Jarolimek, W., Lewen, A. and Misgeld, U (1996) Baclofen-induced and constitutively active inwardly rectifying potassium conductances in cultured rat midbrain neurons. Pflugers Arch. 433, 49-57
O''Donovan, M. J. (1989) Motor activity in the isolated spinal cord of the chick embryo: synaptic drive and firing pattern of single motoneurons. J. Neurosci. 9, 943-958
Obata, K., Oide, M. and Tanaka, H. (1978) Excitatory and inhibitory actions of GABA and glycine on embryonic chick spinal neurons in culture. Brain Res. 144, 179-184
Obrietan, K. and van den Pol, A. N. (1995) GABA neurotransmission in the hypothalamus: Developmental reversal from Ca2+ elevating to depressing. J. Neurosci. 15, 5065-5077
Obrietan, K. and van den Pol, A. N. (1996) Growth cone calcium elevation by GABA. J. Comp. Neurol. 372, 167-175
Olney, J. W. (1969) Brain lesions, obesity and other disturbances in mice treated with monsodium glutamate. Science 164, 719-721
Olney, J. W. (1990) Excitotoxic amino acids and neuropsychiatric disorders. Ann. Rev. Pharmacol. Toxicol. 30, 47-71
Otero, L. M. (1990) GABAergic influence on serotonergic function. Biogenic Amines 7, 289-297
OuYang, Y. B., Mellergard, P., Kristian, T., Kristianova, V. and Siesjo, B. K. (1994) Influence of acid-base changes on the intracellular calcium concentration of neurons in primary culture. Exp. Brain Res. 101, 265-271
Owens, D. F., Boyce, L. H., Davis, M. B. and Kriegstein, A. R. (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J. Neurosci. 16, 6414-6423
Ozawa, S., Iino, M. and Tsuzuki, K. (1991) Two types of kainate responses in cultured rat hippocampal neurons. J. Neurophysiol. 66, 2-11
Paradiso, A. M., Tasien, R. Y. and Machen, T. E. (1987a) Digital image processing of intracellular pH in gastric oxyntic and chief cells. Nature 325, 447-450
Paradiso, A. M., Tasien, R. Y., Demarest, J. R. and Machen, T. E. (1987b) Na-H and Cl-HCO3 exchange in rabbit oxyntic cells using fluorescence microscopy. Am. J. Physiol. 253, C30-C36
Parramon, M., Gonzalez, M. P., Herrero, M. T. and Oset-Gasque, M. J. (1995) GABAB receptors increase intracellular calcium concentratons in chromaffin cells through two different pathways: their role in catecholamine secretion. J. Neurosci. Res. 41, 65-72
Partin, K. M., Patneau, D. K., Winters, C. A., Mayer, M. L. and Buonanno, A. (1993) Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11, 1069-1082
Pasternack, K., Voipio, J. and Kaila, K. (1993) Intracellular carbonic anhydrase activity and its role in GABA-induced acidosis in isolated rat hippocampal pyramidal neurons. Acta Physiol. Scand. 148, 229-231
Pasternack, M., Bountra, C. Voipio, J. and Kaila, K. (1992) Influence of extracelluar and intracellular pH on GABA-gated chloride conductance in crayfish muscle fibers. Neuroscience 47, 921-929
Pasternack, M., Smirnov, S. and Kaila, K. (1996) Proton modulation of functionally distinct GABAA receptors in acutely isolated pyramidal neurons of rat hippocampus. Neuropharmacology 35, 1279-1288.
Patel, A. J., Hunt, A., Gordon, R. D. and Balazs, R. (1982) The activities in different neural cell types of certain enzymes associated with the metabolic compartmentation glutamate. Brain Res. 256, 3-11
Patneau, D. K., Vykkicky, L. Jr. and Mayer, M. L. (1993) Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J. Neurosci. 13, 3496-3509
Patneau, D. K., Wright, P. W., Winters, C., Mayer, M. L. and Gallo, V. (1994) Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptor. Neuron 12, 357-371
Pearce, I. A., Cambray-Deakin, M. A. and Burgoyne, R. D. (1987) Glutamate acting on NMDA receptors stimulates neurite out-growth from cerebellar granule cells. FEBS Lett. 223, 143-147
Pellegrini-Giampietro, D. E., Zukin, R. S., Bennett, M. V. L., Cho, S. and Pulsinelli, W. A. (1992) Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc. Nalt. Acad. Sci. U. S. A. 89, 10499-10503
Petralia, R. S. and Wenthold, R. J. (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J. Comp. Neurol. 318, 329-354
Petralia, R. S., Wang, Y. X. and Wenthold, R. J. (1994a) The NMDA receptor subunits NR2A and NR2B show histological and ultrasturctural localization patterns simmilar to those of NR1. J. Neurosci. 14, 6102-6120
Petralia, R. S., Yokotani, N. and Wenthold, R. J. (1994b) Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. J. Neurosci. 14, 667-696
Pham, T. M. and Lacaille, J. C. (1986) Multiple postsynaptic actions of GABA via GABAB receptors on CA1 pyramidal cells of rat hippocampal slices. J. Neurophysiol. 76, 69-80.
Plaitakis, A., Berl, S. and Yahr, M. (1982) Abnormal glutamate metabolism in an adult-onset degenerative neurological disorder. Science 216, 193-196
Plaitakis, A. and Caroscio, J. T. (1987) Abnormal glutamate metabolism in ALS. Ann. Neurol. 22, 575-579
Polenzani, L., Woodward, R. M. and Miledi, R. (1991)Expression of mammalian g-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. Proc. Natl. Acad. Sci., U. S. A. 88, 4318-4322
Premkumar, L. S. and Auerbach, A. (1996) Identification of a high affinity divalent cation binding site near the entrance of the NMDA receptor channel. Neuron 16, 869-880
Prezeau, L., Manzoni, O., Homburger, V., Sladeczek, F., Curry, K. and Bockaert, J. (1992) Characterization of a metabotropic glutamate receptor: direct negative coupling to adenylate cyclase and involvement of a pertussis toxin-sensitive G protein. Proc. Nalt. Acad. Sci. U. S. A. 89, 8040-8044
Prod''hom, B., Pietrobon, D. and Hess, P. (1989) Interactions of protons with single open L-type calcium channels. J. Gen. Physiol. 94, 23-43
Qian, H. and Dowling, J. E. (1993) Novel GABA responses from rod-driven retinal horizontal cells. Nature 361, 162-164
Qian, H. and Dowling, J. E. (1994) Pharmacology of novel GABA receptors found on rod horizontal cells of the white perch retina. J. Neurosci. 14, 4299-4307
Reichling, D. B., Kyeozis, A., Wnag, J. and MacDermott, A. B. (1994) Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons. J. Physiol. 476, 411-421
Rhee, J. S., Ebihara, S. and Akaike, N. (1994) Gramicidin perforated patch-clamp technique reveals glycine-gated outward chloride current in dissociated nucleus solitarii neurons of rat. J. Neurophysiol. 72, 1103-1108
Rihder, V. and Kater, S. B. (1992) Regulation of neuronal growth cone filopodia by intracellular calcium. J. Neurosci. 12, 3175-3186
Rink, T. J., Tsien, R. Y. and Pozzan, T. (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol. 95,189-196
Robello, M., Baldelli, P. and Cupello, A. (1994) Modulation by extracellular pH of the activity of GABAA receptors on rat cerebellum granule cells. Neuroscience 61, 833-837.
Roberts, E. (1986) in Benzodiazepine/GABA receptors and Chloride Channels: structural and functional properties (Olsen, R. W. and Venter, J. C., eds), pp. 1-39, Alan R. Liss
Roberts, E. and Sherman, M. A. (1993) GABA--the quintessential neurotransmitter: electroneutrality, fidelity, specificity, and a model for the ligand binding site of GABAA receptors. Neurochem. Res. 18, 365-376
Rocha, M. and Sur, M. (1995) Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of N-methyl-D-aspartate receptors. Proc. Nalt. Acad. Sci. U. S. A. 92, 8026-8030
Rohrbough, J. and Spitzer, N. C. (1996) Regulation of intracellular Cl- levels by Na+-dependent Cl- cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons. J. Neurosci. 16, 82-91
Roos, A. and Boron, W. F. (1981) Intracellular pH. Physiol. Rev. 61, 296-434
Rorig, B., Klausa, G. and Sutor, B. (1996) Intracellular acidification reduced gap junction coupling between immature rat neocortical pyramidal neurons. J. Physiol. (Lond) 490, 31-49
Rossi, D. J. and Slater, N. T. (1993) The developmental onset of NMDA receptor-channel activity during neuronal migration. Neuropharmacology 32, 1293-1248
Rothman, S. M. and Olney, J. W. (1986) Glutamate and the patho-physiology of hypoxic-ischemic rain damage. Ann. Neurol. 19, 105-111
Rothman, S. M. and Olney, J. W. (1987) Excitotoxicity and the NMDA receptor. Trends Neurosci. 10, 299-302.
Rothstein, J. D., Tsai, G., Kunel, R. W., Clawson, L., Cornblath, D. R., Drachman, D. B., Pestronk, A., Stauch, B. L. and Coyle, J. T. (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 28, 18-25
Rotto, D. M. and Kaufman, M. P. (1988) Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J. Appl. Physiol. 64. 2306-2313
Rowe, W. A., Blackmon, D. L. and Montrose, M. H. (1993) Propionate activates multiple ion transport mechanisms, in the HT.29-18-C, human colon cell line. Am. J. Physiol. 265, G564-571.
Rozenberg, F., Robain, O., Jardin, L. and Ben-Ari, Y. (1989) Distribution of GABAergic neurons in late fetal and early postnatal rat hippocampus. Dev. Brain Res. 59, 177-187
Ruano, D., Lambolez, B., Rossier, J., Paternain, A. V. and Lerma, J. (1995) Kainate receptor subunits expressed in single cultured hippocampal neurons: molecular and functional variants by RNA editing. Neuron 14, 1009-1017
Russell, J. M., Eaton, D. C. and Brodwick, M. S. (1977) Effects of nystatin on membrane conductance and internal ion activities in Aplysia neurons. J. Membr. Biol. 37, 137-156
Sakimura, K., Morita, T., Kushiya, E. and Mishina, M. (1992) Primary structure and expression of the 2 subunit of the glutamate receptor channel selective for kainate. Neuron 8, 267-274
Sakurade, K., Masu, M. and Nakanishi, S. (1993) Alteration of Ca2+ permeability and sensitivity to Mg2+ and channel blockers by a single amino acid substitution in the N-methyl-D-aspartate receptor. J. Biol. Chem. 268, 410-415
Sater, A. K., Alderton, J. M. and Steinhardt, R. A. (1994) An increase in intracellular pH during neural induction in Xenopus. Development 120, 433-442
Schoepp, D. D. and Conn, P. J. (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol. Sci. 141, 13-20
Schofield, P. R., (1987) Sequence and functional expression of the GABAA receptor shows ligand-gated receptor superfamily. Nature 328, 221-227
Schwarcz, R. and Meldrum, B. (1985) Excitatory amino acid antagonists provide a therapeutic approach to neurological disorders. Lancet 2, 140-143
Segal, M. (1978) An acidic amino acid neurotransmitter in the hippocampal commissural pathway, In Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System, eds R. W. Ryall and J. S. Kelley, pp. 384-387. Elsevier/North-Holland: Amsterdam.
Serafini, R., Valeyev, A. Y., Barker, J. L. and Poulter, M. O. (1995) Depolarizing GABA-activated Cl- channels in embryonic rat spinal and olfactory bulb cells. J. Physiol.(Lond) 488, 371-386
Seress, L. and Ribak, E. C. (1990) The synaptic connections of basket cell axons in the developing rat formation. Exp. Brain Res. 81, 500-508
Seress, L. Frotshcer, M. and Ribak, E. C. (1989) Local circuit neurons in both the dentate gyrus and Ammon''s horn establish synaptic connections with the principal neurons in five day old rats: a morphological basis for inhibition in early development. Exp. Brain Res. 78, 1-9
Sharp, A. P. and Thomas, R. C. (1981) The effects of chloride substitution on intracellular pH in crab muscle. J. Physiol. (Lond) 312, 71-80.
Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P. and Honore, T. (1990) 2,3-Dihydroxy-6-nitro-7-sulfmoylbenzo(F) quinoxaline: a neuroprotectant for cerebral ischemia. Science 247, 571-574.
Sheardown, M. J., Suzdak, P. D. and Nordholm, L. (1993) AMPA, but not NMDA, receptor antagonism is neuroprotective in gerbil global ischemia, even when delayed 24 hr. Eur. J. Pharmacol. 236, 347-353.
Shimada, S. C., Cutting, G. R. and Uhl, G. R. (1992) g-Aminobutyric acid A or C receptor? g-aminobutyric acid r1 receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive g-aminobutyric acid responses in Xenopus oocytes. Mol. Pharmacol. 41, 683-687
Shoji, S., Simms, D., McDaniel, W. C. and Gallagher, J. P. (1997) Chronic cocaine enhances gamma-aminobutyric acid and glutamate release by altering presynaptic and not postsypatic GABAB receptors within the rat dorsolateral septal nucleus. J. Pharmacol. Exp. Ther. 280, 129-137
Sieghart, W. (1995) Structure and pharmacology of g-aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47, 181-234
Siesjo, B. K. (1992) Pathology and treatment of focal cerebral ischemia. II. Mechanisms of damage and treatment. J. Neurosurgery 77, 337-354.
Sivilotti, L. and Nistri, A. (1989) Pharmacology of a novel effect of g-aminobutyric acid on the frog optic tectum in vitro. Eur. J. Pharmacol. 164, 205-212
Sivilotti, L. and Nistri, A. (1991) GABA receptor mechanisms in the central nervous system. Prog. Neurobiol. 36, 35-92
Slakeczek, F., Pin, J. P., Recasens, M., Bockaert, J. and Weiss, S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317, 717-719
Smart, T. G. (1992) A novel modulatory binding site for zinc on the GABAA receptor complex in cultured rat neurons. J. Physiol. (Lond) 447, 587-625.
Smart, T. G. (1995) Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr. Opin. Neurobiol. 7, 358-367.
Smith, S. E. and Meldrum, B. S. (1992) Cerebroprotective effect of a non-N-methyl-D-aspartate antagonist, GYKI 52466, after focal ischemia in the rat. Stroke 23, 861-864.
Sodickson, D. L. and Bean, B. P. (1996) GABAB receptor-activated inwardly rectifying potas
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔