(3.237.178.91) 您好!臺灣時間:2021/03/07 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周蕙萱
研究生(外文):HUI-HSUAN CHOU
論文名稱:中腦活體切片環導水管腹側區細胞神經傳遞及內生性嗎啡呔功能之探討
論文名稱(外文):Characterization of the Synaptic Transmission and the Role of Endogenous Opioids in Ventrolateral Neurons of Periaqueductal Gray Slices
指導教授:邱麗珠邱麗珠引用關係
指導教授(外文):LIH-CHU CHIOU
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:98
中文關鍵詞:中腦環導水管灰質區內生性嗎啡呔嗎啡呔類藥物拮抗劑GABAA受體AMPA/kainate受體鍵結電流
外文關鍵詞:Periaqueductal GrayEndogenous opioidNaloxoneGABAA receptorAMPA/kainate receptorPostsynaptic currents
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
1. 本文實驗在12到16天大之新生大白鼠( Wistar rats )的中腦環導水管灰質區( Periaqueductal Gray, PAG )冠面活體 切片腹側區神經細胞,以blind patch whole cell recording技術闡明鍵結電流特性,並藉由觀察嗎啡呔類藥物拮 抗劑 naloxone在各種刺激條件下,對鍵結電流之影響,求證內生性嗎啡呔在PAG之生理功能。
2. 在kynurenic acid阻斷興奮性神經傳遞時,鍵前刺激可引發抑制性鍵結電流(inhibitory postsynaptic currents, IPSC) ,其反轉電位為-68 ± 3 mV,且可被bicuculline阻斷,故該IPSC為GABAA受體所媒介。
3. 將細胞膜電位固定在IPSC的反轉電位時,鍵前刺激會引發快的興奮性鍵結電流( fast excitatory postsynaptic currents, fEPSC ),其可被CNQX所阻斷,故此fEPSC為AMPA/kainate受體所媒介。
4. 在bicuculline和CNQX存在下,鍵前刺激會引發慢的興奮性鍵結電流( sEPSC ),其可被APV所阻斷,故此sEPSC 為NMDA受體所媒介。其電流對電壓的關係圖顯示,在接近靜止膜電位的極化電位時,會被生理濃度的鎂離 子所阻斷。
5. Naloxone對細胞靜止膜電位和低頻刺激引發的鍵結電流( postsynaptic currents, PSC )並無影響,但只對高頻連 續刺激( 10 Hz, 5 sec;30 Hz, 3 sec;50Hz, 1 sec )後PSC的振幅變化有顯著的影響。
6. 高頻連續刺激後,有36 %細胞PSC會增大,為post-train potentiation ( PTP );38 %細胞的PSC會減小,為 post-train depression ( PTD ),其餘細胞的PSC則無變化。
7. 在EPSC產生PTP的細胞,其中64 %可被naloxone完全壓掉,可能因naloxone拮抗了嗎啡呔藉由抑制GABA細胞 而興奮glutamate細胞的作用。其餘的此類細胞,naloxone則僅減少PTP程度,但不影響其持續時間,此類細胞 可能除了嗎啡呔外,還有興奮性生呔參與興奮glutamate細胞。
8. 在IPSC產生PTP的細胞中,naloxone完全壓掉,可能因嗎啡呔抑制了平時即活化的GABA細胞對鍵前細胞的抑 制作用,即嗎啡呔對鍵前細胞產生disinhibition作用,而naloxone拮抗之。
9. 在EPSC產生PTD的細胞,其中69 %可被naloxone完全壓掉,可能因naloxone拮抗了嗎啡呔對glutamate細胞的抑 制作用。其餘的此類細胞,naloxone均使PTD反轉成PTP的現象,可能是因除了嗎啡呔外,還有興奮性生呔參 與興奮glutamate細胞所致。
10. 在IPSC產生PTD的細胞中,naloxone完全壓掉其PTD,可能因naloxone拮抗了嗎啡呔對GABA細胞的抑制作用 所致。
11. 在高頻連續刺激後EPSC不變的細胞中,naloxone使之產生PTP,可能因naloxone雖拮抗了嗎啡呔對glutamate 細胞的抑制作用,但同時又有興奮性生呔參與興奮glutamate細胞所致。
12. 在高頻連續刺激後IPSC不變的細胞中,naloxone使之產生PTD,可能是因naloxone雖拮抗了嗎啡呔對鍵前細 胞的disinhibition,但同時又有興奮性生呔可興奮平時便活化的GABA細胞所致。
13. 我們結論,鍵前刺激ventrolateral PAG可依序引發三種電位:可被CNQX抑制的fEPSP、可被bicuculline抑制的 IPSP和可被APV抑制的sEPSP。而高頻連續刺激的確可以激發出內生性嗎啡呔,其對神經傳遞的影響,則是 依該嗎啡呔細胞和glutamate或GABA細胞與記錄細胞間鍵結情況而定。在有些情況下,興奮性生呔也可能參 與調控。

1. We used the blind patch whole cell recording technique to characterize the synaptic transmission in ventrolateral PAG. We also tried to reveal the role of endogenous opioids at ventrolateral PAG slices from newborn rats by investigating the effect of naloxone on synaptic transmission evoked by train stimulations.
2. In the presence of kynurenic acid which blocks the excitatory synaptic transmission, focal stimulation evoked an inhibitory postsynaptic current ( IPSC ). The IPSC reversed at -68 ± 3 mV and was inhibited by bicuculline. The IPSC, therefore, is mediated by GABAA receptors.
3. While the cell membrane potential was clamped at the reversal potential of the IPSC, focal stimulation evoked a fast excitatory postsynaptic current ( fEPSC ), which was inhibited by CNQX. The fEPSC, therefore, is mediated by AMPA/kainate receptors.
4. In the presence of bicuculline and CNQX, focal stimulation evoked a slow EPSC ( sEPSC ), which was inhibited by APV. The sEPSC, therefore, is mediated by NMDA receptors. The I-V curve of sEPSC shows a voltage-dependent block by extracellular Mg2+.
5. Naloxone had no effect on resting membrane potential and postsynaptic currents ( PSC ) induced by basal stimulation (0.05 Hz). It, however, significantly affected the trend of PSC evoked by high frequency stimulations ( 10 Hz, 5 sec; 30 Hz, 3 sec; 50 Hz, 1 sec ).
6. After train stimulation, the PSCs became larger, termed post-train potentiation effect ( PTP ) in 36 % cells and in 38 % cells, became smaller, termed post-train depression effect ( PTD ). The PSCs in others did not change after train stimulation.
7. Among the cells showing PTP of EPSCs, naloxone abolished the PTP in 64 % cells. It suggests that naloxone antagonize the effect of opioid which activates the presynaptic glutamergic cell by inhibiting a GABAergic cell which inhibits the target cell presynaptically. In other cells, naloxone only decreased the degree of PTP. It suggests that in addition to opioids, an excitatory peptide was elicited during train stimulation and contributed to the regulation of the synaptic transmission.
8. Naloxone abolished all the PTP of IPSPs. It suggests that naloxone antagonized the effect of opioid which inhibits the tonically active GABAergic cell that inhibits the target cell presynaptically.
9. Among the cells showing PTD of EPSCs, naloxone abolished the PTD in 69 % cells. It suggests that naloxone antagonize the effect of opioid which inhibits the presynaptic glutamergic cell. In other cells, naloxone reversed PTD into PTP. It suggests that in addition to opioids, an excitatory peptide was also involved in the regulation of the synaptic transmission.
10. Naloxone abolished all the PTD of IPSCs. It suggests that naloxone antagonized the effect of opioid which inhibits the GABAergic cells.
11. In cells showing no change of the trend of post-train EPSCs, naloxone induced a PTP. It suggests that naloxone antagonized the inhibitory effect of opioid but spared the excitatory effect of the excitatory peptide on the presynaptic glutamergic cell.
12. In cells showing no change of the trend of post-train IPSCs, naloxone induced a PTD. It suggests that naloxone antagonized the inhibitory effect of opioid but spare the excitatory effect of the excitatory peptide on a tonically active GABAergic cell. The latter presynaptically inhibits the afferent GABAergic neuron.
13. In conclusion, a focal stimulation at ventrolateral PAG can induce a CNQX-sensitive fEPSP, followed by a bicuculline-sensitive IPSP and then an APV-sensitive sEPSP. After train stimulation, endogenous opioids can be evoked and participate in the regulation of synaptic transmission. Its effect on synaptic transmission depends on the synaptic connection of opioid cells with glutamergic or GABAergic cells. In some situations, the excitatory peptide neuron might participate in the regulation of the synaptic transmission.

英文摘要 ------------------------------------------------------------ 1
中文摘要 ------------------------------------------------------------ 5
第一章 緒論 ------------------------------------------------------ 8
第二章 實驗材料及方法 --------------------------------------- 12
第三章 實驗結果 ------------------------------------------------ 19
第四章 討論 ------------------------------------------------------ 32
圖表 ------------------------------------------------------------------ 41
參考文獻 ------------------------------------------------------------ 89

1. Adams JE. Naloxone reversal of analgesia produced by brain stimulation in the human. Pain 2:161-166; 1976.
2. Advokat C. The role of descending inhibition in morphine-induced analgesia. Trend Pharm Sci 9:330-334; 1988.
3. Aimone LD. and Gebhart GF. Stimulation-produced spinal inhibition from the midbrain in the rat is mediated by an excitatory amino acid neurotransmitter in the medial medulla. J Neurosci 6: 1803-1813; 1986.
4. Akil H. Mayer D. and Liebeskind JC. Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191:961-962; 1976.
5. Atweh SF. and Kuhar MJ. Autoradiographic localization of opiate receptors in rat brain. II. The brain stem. Brain Res 129:1-12; 1977.
6. Behbehani MM. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46:575-605; 1995.
7. Behbehani MM. Shipley MT. and McLean JH. Effect of neurotensin on neurons in the periaqueductal gray : An in vitro study. J Neurosci 7:2035-2040; 1987.
8. Behbehani MM. The analgesic effect of neurotensin. In: proceeding of the Second International Conference on Neurotensin. Ann N Y Acad Sci 668:253-265; 1992.
9. Beitz AJ. and Williams FG. Localization of putative amino acid transmitters in the PAG and their relationship to the PAG-raphe magnus pathway. In: The midbrain periaqueductal gray matter (Depaulis A, Bandler R, eds):305-327. New York: Plenum Press.; 1991.
10. Beitz AJ. Shepard GD. and Wells WE. The periaqueductal gray-raphe magnus projection contains somatostatin, neurotensin and serotonin but not cholecystokinin. Brain Res 261:132-137; 1983.
11. Ben-Ari Y. Cherubini E. and Krnjeric K. Changes in voltage dependence of NMDA currents during development. Neurosci Lett. 94:88-92; 1988.
12. Blanton MG. Loturco JJ. and Kriegstein AR. Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30:203-210; 1989.
13. Bloom F. Battenberg E. Rossier J. Ling N. and Guillemin R. Neurons containing beta endorphin in rat brain exist separately from those containing enkephalin: immunocytochemical studies. Proc Natl Acad Sci USA 75:1591-1595; 1978.
14. Bowery NG. Hudson AL. and Price GW. GABAA and GABAB receptor site distribution in the rat central nervous system. Neurosci 20:365-383; 1987.
15. Cannon JT. Prieto GJ. Lee A. and Liebeskind JC. Evidence for opioid and non-opioid forms of stimulation-produced analgesia in the rat. Brain Res 243:315-321; 1982.
16. Capogna M. Gahwiler BH. and Thompson SM. Mechanism of m-opioid receptor-mediated presynaptic inhibition in the rat hippocampus in vitro. J Physiol 470:539-558; 1993.
17. Chieng B. and Christie MJ. Hyperpolarization by GABAB receptor agonists in mid-brain periaqueductal gray neurones in vitro. Br J Pharmacol 116:1583-1588; 1995.
18. Chieng B. and Christie MJ. Hyperpolarization by opioids acting on m-receptors of a sub-population of rat periaqueductal gray neurons in vitro. Br J Pharmacol 113:121-128; 1994a.
19. Chieng B. and Christie MJ. Inhibition by opioids acting on m-receptors of GABAergic and glutamergic postsynaptic potentials in single rat periaqueductal gray neurons in vitro. Br J Pharmacol 113:03-309; 1994b.
20. Chiou LC. [Phe1-(CH2-NH)Gly2] nociceptin-(1-13)-NH2 activation of the inward rectifier as a partial agonist of ORL1 in rat periaqueductal gray. Br J Pharmacol (accepted); 1999.
21. Chiou LC. and Huang ML-Y. Mechanism underlying increased neuronal activity in the rat ventrolateral periaqueductal gray by a m-opioid. J. Physiol. ( in press). 1999.
22. Clements JR. Made TE. Johnson RL. Larson AA. and Beitz AA. Localization of the glutamate, glutaminase, aspartate and aspartate aminotransaminase in the rat midbrain periaqueductal gray. Exp Brain Res 67:594-62; 1987.
23. Cotman CW. Monaghan DT. Ottersen DP. and Storm-Mathisen J. Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 10:273-280; 1987.
24. De Leon M. Covenas R. Narvaez JA. Tramu G. Aguirre JA. and Gonzalez Baron S. Distribution of neurotensin-like immuno-reactive cell bodies and fibers in the brainstem of the adult mal cat. Peptides 12:1201-1209; 1991.
25. Dutar P. and Nicoll RA. A physiological role for GABAB receptors in the central nervous system. Nature 332:156-158; 1988
26. Finley JC. Maderdrut JL. and Petrusz P. The immunocytochemical localization of enkephalin in the central nervous system of the rat. J Comp Neurol 198:541-565; 1981.
27. Gioia M. and Bianchi R. The distribution of substance P and met-enkephalin in the periaqueductal gray matter of the rat. Bas Appl Histochem 32: 103-108; 1988.
28. Han SH. Cho YW. Kim CJ. Min BI. Rhee IS. and Akaike N. mu-opioids agonist-induced activation of G-protein-coupled inwardly rectifying potassium current in rat periaqueductal gray neurons. Neurosci 90:209-219; 1999.
29. Hung CF. Wu MH. Tsi VH. Chu SH. Chi JF and Su MJ. Electrophysiological mechanisms for the antiarrhythmic activities of naloxone on cardiac tissues. Life Sci 63:1205-1219; 1998.
30. Iijima I. Minamikawa J. Jacobson AE. Brossi A. and Rice KC. Studies in the (+)-morphine series 5. Synthesis and biological properties of (+)-naloxone. J Med Chem 21:398-400; 1978.
31. Isaac JT. and Wheal HV. The local anaesthetic QX-314 enables enhanced whole-cell recording of excitatory synaptic currents in rat hippocampal slices in vitro. Neurosci Lett 150:227-230; 1993.
32. Johnson SW. and North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483-488; 1992.
33. Lakos S. and Basaum AI. An ultrastructural study of the projections from the midbrain periaqueductal gray to spinally projecting, serotonin-immunoreactive neurons of the medullary nucleus raphe magnus in the rat. Brain Res 443:383-388; 1988.
34. Lewis VA. and Gebhart GF. Evaluation of the periaqueductal central gray (PAG) as a morphine-specific locus of action and examination of morphine-induced and stimulation-produced analgesia at coincident PAG loci. Brain Res 124:283-303; 1977.
35. MacDonald JF. and Nowak LM. Mechanisms of blockade of excitatory amino acid receptor channels. Trends Pharmacol Sci 11:167-72; 1990.
36. Mai JK. Triepel J. and Metz J. Neurotensin in the human brain. Neurosci 22:499-524; 1987.
37. Mansour A. Fox CA. Akil H. and Watson SJ. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implication. Trends Neurosci 18:22-29; 1995.
38. Mansour A. Khachaturian H. Lewis ME. Akil H. and Watson SJ. Autoradiographic differentiation of mu, delta and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7:2445-2464; 1987.
39. McCabe RT. and Wamsley JK. Autoradiographic localization of subcomponents of the macromolecular GABA receptor complex. Life Sci 39:1937-1945; 1986.
40. Milanes MV. Vargas ML. Martinez JA. Perez D. and Brugger AJ. Effects of chronic treatment with atypical neuroleptics on the biosynthesis and release of opioid peptides in guinea-pig ileum. Regulatory Peptides 10:319-27; 1985.
41. Moss MM. and Basbaum AI. The fine structure of the caudal periaqueductal gray of the cat: morphology and synaptic organization of normal and immunoreactive enkephalin-labelled profiles. Brain Res 289:27-43; 1983.
42. Nathan T. Jensen MS. and Lambert JDC. The slow inhibitory postsynaptic potential on rat hippocampal CA1 neurones is blocked by intracellular injection of QX-314. Neurosci Lett 110: 309-313; 1990.
43. Neher E. Correction for liquid junction potentials in patch clamp experiments. Mehthods Enzymol 207:123-131; 1992.
44. Nicola SM. and Malenka R. Dopamine depress excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J Neurosci 17:5697-5710; 1997.
45. Nicoll RA. Malenka RC. and Kauer JA. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiolo. Rev. 70:514-565; 1990.
46. Nicoll. RA. Alger BE. and Jahr CE. Enkephalin blocks inhibitory pathways in the vertebrate CNS. Nature 287:22-25; 1980.
47. Oehme P. and Hilse H. Substance P: does it produce analgesia or hyperalgesia ? Science 208:305-307; 1980.
48. Prieto GJ. Cannon JT. and Liebeskind JC. N. raphe magnus lesion disrupt stimulated-produced analgesia from ventrolateral but not dorsal midbrain areas in the rat. Brain Res 261:53-57; 1983.
49. Proudfit HK. and Anderson EG. Morphine analgesia blocked by raphe magnus lesion. Brain Res 98:612-618; 1975.
50. Quirion R. Welner S. Gauthier S. and Bedars P. Neurotensin receptor binding sites in monkey and human brain: Autoradiographic distribution and effects of 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine treatment. Synapse 1:559-566; 1987.
51. Reichling DB. and Basbaum AI. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus. J Comp Neurol 302:370-377; 1990.
52. Reichling DB. GABAergic neuronal circuitry in the periaqueductal gray matter. The midbrain periaqueductal gray matter A. Depaulis and R. Bandler, 139-150, Plenum Press, New York.; 1991.
53. Reichling DB. Kwiat GC. and Basbaum AI. Anatomy, physiology and pharmacology of the periaqueductal gray contribution to antinociceptive controls. Prog Brain Res 77:31-46; 1988.
54. Robert M. Caudle RM. Wagner J. and Chavkin C. Endogenous opioids released from perforant path modulate norepinephrine actions and inhibitory postsynaptic potentials in guinea pig CA3 pyramidal cells. J pharmacol and experimental therapeutics 258:18-26; 1991.
55. Wagner JJ. Caudle RM. Neumaier JF. and Chavkin C. Stimulation of endogenous opioid release displaces mu receptor binding in rat hippocampus. Neurosci 37:45-53; 1990.
56. Wiklund l. Behzadi G. Kalen P. Headley PM. Nicolopoulos LS. Parsons CG. and West PC. Autoradiographic and electro-physiological evidence for excitatory amino acid transmission in the periaqueductal gray projection to the nucleus raphe magnus in the rat. Neurosci Lett 93:158-163; 1988.
57. Williams FG. and Beitz AL. Ultrastructural morphometric analysis of GABA-immunoreactive terminals in the ventrolcaudal periaqueductal gray: Analysis of relationship of GABA terminals and the GABAA receptor to periaqueductal gray-raphe magnus projection neurons. J Neurocytol 19:686-696; 1990.
58. Williams FG. Mullet MA. and Beitz AJ. Basal release of Met-enkephalin and neurotensin in the ventrolateral periaqueductal gray matter of the rat: a microdialysis study of antinociceptive circuits. Brain Res 690: 207-216; 1995.
59. Yaksh TL. and Rudy TA. Narcotic analgesics: CNS sites and mechanisms of actions as revealed by intrathecal injection technique. Pain 4:299-359; 1978.
60. Yaksh TL. Frederickson RC. Huang SP. and Rudy TA. In vivo comparison of the receptor population acted upon in the spinal cord by morphine and opioid pentapeptides in the production of analgesia. Brain Res 148:516-520; 1978.
61. Yaksh TL. Yeung JC. and Rudy TA. Systematic examination in the rat of brain sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal gray. Brain Res 114:83-103; 1976.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔