跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 19:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝鴻明
研究生(外文):Hung-Ming Hsieh
論文名稱:Serotonin在非洲大蝸牛中樞神經細胞之藥理學研究 
論文名稱(外文):Pharmacological studies of serotonin on central neurons of African giant snail Achatina fulica Ferussac.
指導教授:蔡明正蔡明正引用關係
指導教授(外文):Ming-Cheng Tsai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:75
中文關鍵詞:血清素猝發現象
外文關鍵詞:serotoninbursting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
一、 本實驗以非洲大蝸牛 (Achatina fulica) 的中樞神經元為實驗材料,以一般藥理和電生理學的方法,探討serotonin (5-HT) 對蝸牛中樞神經元之作用及其可能的作用機制。
二、 在正常生理溶液灌流下,非洲大蝸牛食道下神經節(suboesophageal ganglion) 的RP7神經元會產生規則的自發性動作電位。
三、 5-HT (30 microM) 可引起RP7神經元產生動作電位猝發現象,此種猝發現象是可逆的,即以正常生理溶液洗去5-HT後,RP7神經元可恢復為未加入5-HT (30 mciroM) 前之規則自發性動作電位。但是5-HT (30 microM) 於相同蝸牛神經節的其他神經元,如:RP8、LP4,卻無法引起動作電位猝發現象,顯示5-HT (30 microM) 引起猝發現象的作用具有神經元選擇性。
四、 比較各種濃度的5-HT (1 microM, 3 microM, 10 microM, 30 microM, 100 microM, 300 microM) 對RP7神經元上的反應,給藥後20分鐘,1 microM、 3 microM、 10 microM的5-HT無法引起猝發現象;30 microM、 100 microM、300 microM 則可。
五、 5-HT (30 microM) 於RP7神經元引起猝發現象後,分別以hexamethonium (50 microM)、d-tubocurarine (100 microM)、atropine (1mM)灌流,猝發現象皆不被抑制,顯示5-HT (30 microM) 引起的猝發現象與ganglionic、nicotinic、muscarinic的cholinergic受體無關。
六、 5-HT (30 microM) 於RP7神經元引起猝發現象後,分別以prazosin (100 microM)、propranolol (100 microM)、haloperidol (260 microM)灌流,猝發現象皆不受抑制,顯示5-HT (30 microM) 引起的猝發現象與adrenergic 、dopaminergic受體無關。
七、 5-HT (30 microM) 於RP7神經元引起猝發現象後,分別以NAN-190 (50 microM)、ketanserin (100 microM)、mianserin (50 microM)、MDL-72222 (10 microM)灌流,猝發現象皆不被抑制,顯示5-HT (30 microM) 引起的猝發現象與5-HT1A、5-HT2、5-HT3受體無關。
八、 以高鎂 (30mM) 生理溶液灌流RP7神經元20分鐘後,再加入5-HT (30 microM) 可觀察到猝發現象的產生;若先以5-HT (30 microM)引起猝發現象後,再以含5-HT (30 microM) 的高鎂 (30mM) 生理溶液灌流20分鐘,猝發現象並未受到抑制。顯示5-HT (30 microM) 於RP7引起的猝發現象與突觸前需要鈣離子參與 (Ca2+-dependent)而釋放的神經傳遞物無關。
九、 以缺鉀生理溶液灌流RP7神經元20分鐘後,再加入5-HT (30 microM) 可觀察到猝發現象的產生;若先以5-HT (30 microM) 引起猝發現象後再以含5-HT (30 microM) 的缺鉀生理溶液灌流20分鐘後,猝發現象並未受到抑制。顯示:5-HT (30 microM) 於RP7神經元引起的猝發現象和胞外鉀離子無直接相關。
十、 以低鈣 (50%) 生理溶液灌流RP7神經元20分鐘後,再加入5-HT (30 microM) 可觀察到猝發現象的產生;若先以5-HT (30 microM) 引起猝發現象後再以含5-HT (30 microM) 的低鈣 (50%) 生理溶液灌流20分鐘後,猝發現象並未受到抑制。顯示:5-HT (30 microM) 於RP7神經元引起的猝發現象和胞外鈣離子無直接相關。
十一、 以低鈉 (50%) 生理溶液灌流RP7神經元20分鐘後,再加入5-HT (30 microM) 可觀察到猝發現象的產生;若先以5-HT (30 microM) 引起猝發現象後再以含5-HT (30 microM) 的低鈉 (50%) 生理溶液灌流20分鐘後,猝發現象並未受到抑制。顯示:5-HT (30 microM) 於RP7神經元引起的猝發現象和胞外鈉離子無直接相關。
十二、 以5-HT (10 microM) 作用於RP7神經元60分鐘後,仍無猝發現象,在5-HT (10 microM) 仍存在的情況下,若再加入forskolin (adenylate cyclase 活化劑,100 microM) , 5~10分鐘後,猝發現象產生。顯示:forskolin (100 microM) 可促進5-HT (10 microM) 產生猝發現象。
十三、 Forskolin (100 microM) 單獨作用於RP7神經元時,即使經90分鐘仍無猝發現象產生,在forskolin (100 microM) 仍存在的情況下若再加入IBMX (isobutylmethylxanthine, phosphodiesterase 抑制劑, 500 microM),約20~30分鐘後可觀察到類似由5-HT (30 microM) 引起的猝發現象。顯示:5-HT可能是經由cAMP於RP7引起猝發現象。
十四、 若先以2',5'-dideoxyadenosine (adenylate cyclase抑制劑) 作用於RP7神經元30分鐘後,再加入5-HT (30 microM),即使經40分鐘後,仍無猝發現象。顯示:5-HT乃經由活化adenylate cyclase ,接著增加胞內cAMP濃度,此訊息傳遞路徑以於RP7神經元產生猝發現象。

Summary
The effects of serotonin (5-HT) were studied in the central neurons of the giant African snails ( Achatina fulica ) . 5-HT (30 microM) elicited bursting activity of action potentials in Achatina fulica central RP7 neuron but not RP8 and LP4 neurons .
The 5-HT-elicited bursting was not inhibited after continuous perfusion with hexamethonium (50 microM), d-tubocurarine (100 microM), atropine (1mM), prazosin (100 microM), propranolol (100 mciroM), haloperidol (260 microM), NAN-190 (50 microM), ketanserin (100 microM), mianserin (50 microM) and MDL-72222 (10 microM) . These results suggest that the bursting activity elicited by 5-HT was not due to the cholinergic, adrenergic, dopaminergic, 5-HT1A, 5-HT2 and 5-HT3 receptors of the excitable membrane.
Prior treatment with high Mg2+ (30mM), K+ -free, low Ca2+ (50%) and low Na+ (50%) solution didn't inhibit 5-HT to elicit bursting of action potentials in RP7. 5-HT-elicited bursting wasn't inhibited after continuous perfusion with high Mg2+ (30mM), K+-free, low Ca2+ (50%) and low Na+ (50%) solution. These results suggest that the bursting activity elicited by 5-HT may not directly involve in extracellular K+, Ca2+, Na+ and synaptic effects of neurotransmitters.
The 5-HT-elicted bursting activity was potentiated by forskolin (adenylate cyclase activator) and was mimicked by forskolin together with isobutylmethylxanthine (IBMX, phosphodiesterase inhibitor). The 5-HT-elicited bursting was suppressed by prior treatment with 2',5'-dideoxyadnosine ( adenylate cyclase inhibitor ). These results suggest that 5-HT may elicit bursting of action potentials through cAMP in RP7 neuron of Achatina fulica.
It's concluded that 5-HT may elicit bursting of action potentials through cAMP in RP7 neuron of Achatina fulica and that the 5-HT-elicited bursting of action potentials may not directly involve in extracellular K+, Ca2+, Na+ , synaptic effects of neurotransmitters, the cholinergic, adrenergic, dopaminergic, 5-HT1A, 5-HT2 and 5-HT3 receptors of the excitable membrane.

          目錄
                     頁次
英文摘要-----------------------------------------------------------1
中文摘要-----------------------------------------------------------3
緒論-----------------------------------------------------------------7
實驗方法及材料------------------------------------------------10
結果----------------------------------------------------------------13
討論----------------------------------------------------------------31
參考文獻---------------------------------------------------------40
圖表----------------------------------------------------------------51

Reference
Acdenhoff, J.B., Hofmeier, G., Lux, H.D. and Swandulla, D. (1983) Stimulation of sodium influx by cAMP in Helix neurons. Brain Res. 276: 289-296.
Albowitz, B. and Gasteiger, E.L. (1985) Interictal afterdischarge in focal penicillin epilepsy: thalamocortical unit activity. Exp.Neurol. 88:360-371.
Alevizos, A., Weiss, K.R., Koester, J. (1991) Synaptic actions of identified peptidergic neuron R15 in Aplysia. III. Activation of the large hermaphroditic duct. J. Neurosci. 11: 1282-1290.
Andrade, R. and Chaput, Y. (1991) The electrophysiology of serotonin receptor subtypes. In serotonin receptor subtype: Basic and clinical aspects. ( Peroutka, S. J., ed.) Receptor Biochemistry and methodology 15: 103-124.
Arvanov, V.L., Chen, R.C., Chen, Y.H., Liou, H.H., Chang, Y.C. Arvanov, V.A. and Tsai, M.C. (1994b) Modulation of pentylenetetrazol induced bursting activity by electrogenic Na+ pump in Achatina fulica neurons. Asia. Pacific. J. Pharmacol. 9: 37-42.
Arvanov, V.L., Chou, R.C., Chen, R.C. and Tsai, M.C. (1994a) Pre- and postsynaptic action of mematine at cholinergic central synapse of Achatina fulica. Comp. Biochem. Physiol. C107: 305-11.
Arvanov, V.L., Ling, K.H., Chen, R.C. and Tsai, M.C. (1993) Effects of territrem-B on cholinergic response of snail neuron. Neurosci. Lett. 152: 69-71.
Barrett, J.E. and Gleeson, S. (1992) Discriminative stimulus effects of 8-OH-DPAT in pigeons: antagonism studies with the putative 5-HT1A receptor antagonists BMY 7378 and NAN-190. Europ. J. Pharmacol. 217: 163-71.
Baxter, D. and Byrne, J.H. (1989) Serotonergic modulation of two potassium currents in the pleural sensory neurones of Aplysia. J. Neurophysiol. 62: 665-679.
Baxter, D. and Byrne, J.H. (1990) Differential effects of cyclic AMP and serotonin on membrane current, action-potential duration and excitability in somata of pleural sensory neurones of Aplysia. J. Neurophysiol. 64: 978-990.
Benson, J.A. and Levitan, I.B. (1983) Serotonin increases an anomalously rectifying K+ current in the Aplysia neuron R15. Proc. Natl. Acad. Sci. USA 80: 3522-3525.
Bracci, E., Ballerini, L. and Nistri, A. (1996) Localization of rhythmogenic networks responsible for spontaneous bursting induced by strychnine and bicuculine in the rat isolated spinal cord. J. Neuronsci. 16: 7063-7076.
Brodie, B.B., and Shore, P.A. (1956) A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Ann. N. Y. Acad. Sci. 66: 631-642.
Browning, M.D., Huganir, R. and Greengard, P. (1985) Protein phosphorylation and neuronal function. J. Neurochem. 45: 11-45.
Calabrese, R.L. (1995) Oscillation in motor pattern-generating networks. Current Opinion Neurobio. 5: 816-823.
Clements-Jewry, S. and Robson, P.A. (1980) The in vivo and in vitro occupation of 3H-spiperone binding sites in the frontal cortex and striatum by putative 5-hydroxytryptamine antagonists. Neuropharmacology 19: 657-661.
Connor, J.A. and Hockberger, P. (1984) A novel membrane sodium current induced by injection of cyclic nucleotides into gastropod neurones. J. Physiol. 354: 139-162.
Cottrell, G.A. and Macon, J.B. (1974) Synaptic connexions of two symmetrically placed giant serotonin-containing neurones. J. Physiol. Lond. 236: 435-464.
Daniele, P.T., Philippe, D., and Hersch, M.G. (1981) Relationship between two voltage-dependent serotonin responses of molluscan neurones. Brain Res. 217: 201-206.
Descarries, L., Audet, M.A., Doucet, G., Garcia, S., Oleskevich, S., Seguela, P., Soghomonian, J.J. and Watkins, K.C. (1990) Morphology of central serotonin neurons: brief review of quantified aspects of their distribution and ultrastructural relationships. Ann. N.Y. Acad. Sci. 600: 81-92.
Dumbrille-Ross, A., Tang, S.W. and Coscina, D. V. (1981) Differential binding of 3H-imipramine and 3H-mianserin in rat cerebral cortex. Life Sci. 29: 2049-2058.
England, L.J., Imperial, J., Jacobsen, R., Craig, A.G., Gulyas, J., Akhtar, M., Rivier, J., Julius, D. and Olivera, B. M. (1998) Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails. Science 281: 575-578.
Ewald, D. and Eckert, R. (1983) Cyclic AMP enhances calcium-dependent potassium current in Aplysia neurons. Cell. Mol. Neurobiol. 3: 345-353.
Funase, K., Watanabe, K. and Onozuka, M. (1993) Augmentation of bursting pacemaker activity by serotonin in an identified Achatina fulica neurone: an increase in sodium- and calcium- activated negative slope resistance via cyclic- AMP-dependent protein phosphorylation. J. Exp. Biol. 175: 33-44.
Gainer, H. (1972) Electrophysiological behavior of an endogenously active neurosecretory cell. Brain Res. 39: 403-418.
Gainer, H. (1972) Patterns of protein synthesis in individual, identified molluscan neurons. Brain Res. 39: 369-385.
Gandolfi, O., Barbaccia, M.L. and Costa, E. (1985) Different effects of serotonin antagonists on 3H-mianserin and 3H-ketanserin recognition sites. Life Sci. 36: 713-721.
Gedar, H. and Schwartz, J.H. (1972) Cyclic adenosine monophosphate in the nervous system of Aplysia californica. II Effects of serotonin and dopamine. J. Gen. Physiol. 60: 570-587.
Gerschenfeld, H.M. and Paupardin-Tritsch, D. (1974) On the transmitter function of 5-hydroxytryptamine at excitatory and inhibitory monosynaptic junctions. J. Physiol. Lond. 243: 457-481.
Glennon, R.A., Naiman, N.A., Pierson, M.E., Titeler, M., Lyon, R.A. and Weisberg, E. (1988) NAN-190: an arylpiperazine analog that antagonizes the stimulus effects of the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT). Europ. J. Pharmacol. 154: 339-341.
Green, D. and Gillette, R. (1983) Patch- and voltage-clamp analysis of cyclic AMP-stimulated inward current underlying neurones bursting. Nature 306: 784-785.
Green, K.A., Lambert, J.J. and Cottrell, G.A. (1996) Ligand-gated ion channels opened by 5-HT in molluscan neurones. British J. Pharmcol. 119: 602-608.
Greenberg, S.M. Bernier, L.and Schwartz, J.H. (1987) Distribution of AMP and cyclic AMP-dependent protein kinase in Aplysia sensory neurones. J. Neurosci. 7: 291-301.
Greengard, P. (1976) Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature 260: 101-108.
Harris-Warrick, R.M., and Flamm, R.E. (1987) Multiple mechanisms of bursting in a conditional bursting neuron. J. Neurosci. 7: 2113-2128.
Hockerger, P. and Connor, J.A. (1984) Alteration of calcium conductances and outward current by cyclic adenosine monophosphate (cAMP) in neurons of Limax maximus. Cell. Mol. Neurobiol. 4: 319-338.
Jeevanjee, F., Johnson, A.M., Loudon, J.M. and Nicholass, J.M. (1984) Enhancement of [3H] flunitrazepam binding by mianserin, in vivo. Neurosci. Lett. 46: 305-309.
Jenner, P., Sheehy, M. and Marsden, C.D. (1983) Noradrenaline and 5-hydroxytryptamine modulation of brain dopamine function: implications for the treatment of parkinson's disease. Bri. J. Clin. Pharmacol. 15: 277S-289S.
Kaczmardk, L.K. and Strumwasser, F. (1984) A voltage clamp analysis of currents underlying cAMP-induced membrane modulation in isolated peptidergic neurons of Aplysia. J. Neurophysiol. 52: 340-349.
Kehoe, J. (1985) Synaptic block of a calcium-activated potassium conductance in Aplysia neurones. J. Physiol. 369: 439-474.
Kehoe, J. (1986) Synaptic correlates of a Na+-dependent current induced by cyclic nucleotide (cyclic AMP) in Aplysia neurones. J. Physiol. 377: 34P.
Kostyuk, P.G. (1986) Cyclic nucleotides as modulators and activators of ionic channels in the nerve cell membrane. Prog. Brain Res. 69: 133-137.
Krhoe, J. (1985) Synaptic block of a transmitter induced potassium conductance in Aplysia neurones. J. Physiol. 369: 399-4373.
Levitan, E.S. and Levitan, I.B. (1988) A cyclic GMP analog decreases the currents underlying bursting activity in the Aplysia neuron R15. J. Neurosci. 8: 1162-1171.
Levitan, E.S. and Levitan, I.B. (1988) Serotonin acting via cyclic-AMP enhances both the hyperpolarizing and depolarizing phases of bursting pacemaker activity in the Aplysia neuron R15. J. Neurosci. 8: 1152-1161.
Levitan, E.S., Kramer, R.H. and Levitan, I.B. (1987) Augmentation of bursting pacemaker activity by egg-laying hormone in Aplysia neurone R15 is mediated by a cyclic AMP-dependent increase in Ca2+ and K+ currents. Proc. Natl. Acad. Sci. U.S.A. 84: 6307-6311.
Levitan, I.B. (1978) Adenylate cyclase in isolated Helix and Aplysia neuronal cell bodies: stimulation by serotonin and peptide-containing extract. Brain Res. 154: 404-408.
Levitan, I.B. (1985) Phosphorylation of ion channels. J. Memb. Biol. 87: 177-190.
Lotshaw, D.P., Levitan, E.S. and Levitan, I.B. (1986) Fine tuning of neuronal electrical activity: Modulation of several ion channels by intracellular messengers in a single identified nerve cell. J. Exp. Biol. 124: 307-322.
Mansour, T.E., (1979) Chemotherapy of parasitic worms: new biochemical strategies. Science 205:462-469.
Miller, C. (1995) The charybdotoxin family of K+ channel-blocking peptides. Neuron 15: 5-10.
Nickolson, V.J. and Wieringa, J.H. (1981) Presynaptic a-block and inhibition of noradrenaline and 5-hydroxytryptamine reuptake by a series of compounds related to mianserin. J. Pharm. Pharmacol. 33: 760-766.
Nickolson, V.J., Wieringa, J.H. and Delft, A.M.L. (1982) Comparative pharmacology of mianserin, its main metabolites and 6-azamianserin. Naunyn-Schmiedeberg's Arch Pharmcol. 319: 48-55.
Olivera, B.M. (1997) Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol. Biol. Cell 8: 2101-2109.
Osborne, N.N. (1977) Do snail neurones contain more than one neurotransmitter? Nature 270: 622-623.
Overton, P.G. and Clark, D. (1997) Burst firing in midbrain dopaminergic neurons. Brain Res. Rev. 312-334.
Page, I.H. (1976) The discovery of serotonin. Perspect. Biol. Med. 20:1-8.
Palacios, J.M., Waeber, C., Hoyer, D., and Mengod, G. (1990) Distribution of serotonin receptors. Ann. N.Y. Acad. Sci. 600: 36-52.
Paupardin-Tritsch, D., Deterre, P., and Gerschen-Feld, H.M. (1981) Relationship between two voltage-dependent serotonin responses of mulluscan neurones. Brain Research 217: 201-206.
Peroutka, S.J., and Howell, T.A. (1994) The molecular evolution of G protein-coupled receptors: focus on 5-hydroxytryptamine receptors. Neuropharmacology 33: 319-324.
Przegalinski, E., Ismaiel, A.M., Chojnacka-Wojcik, E., Budziszewska, B., Tatarczynska, E. and Blaszcynska, E. (1990) The behavioural, but not the hypothermic or corticosterone, response to 8-hydroxy-2-(DI-n-propylamino)-tetralin, is antagonized by nan-190 in the rat. Neuropharmacology 29: 521-526.
Raiteri, M., Maura, G., Gemignani, A. and Pittaluga, A. (1983) Differential blockade by (-)mianserin of the alpha2-adrenoceptors mediating inhibition of noradrenaline and serotonin release from rat brain synaptosomes. Naunyn-Schmiedeberg's Arch Pharmcol. 322: 180-182.
Rapport, M.M., Green, A.A. and Page, I.H. (1948) Serum vasoconstrictor (serotonin). IV. Isolation and characterization. J. Biol. Chem. 176: 1243-1251.
Sakharov, D.A. and Korobtsov, G.N. (1976) Neural serotonin receptors in active and hibernating helicid snails (Helix lucorum). Experientia. 32-5: 588-589.
Siegelbaum, S.A. and Tsien, R.W. (1983) Modulation of gated ion channels as a mode of transmitter action. Trends Neurosci. 6: 307-313.
Strong, J.A. and Kaczmarek, L.K. (1986) Multiple components of delayed potassium current in peptidergic neurons of Aplysia. J. Neurosci. 6: 814-822.
Sudlow, L.C. and Gillette, R. (1997) Cyclic AMP levels, adenylyl cyclase activity, and theiir stimulation by serotonin quantified in intact neurons. J. Gen. Physiol. 110: 243-255.
Sugaya, A., Sugaya, E. and Tsujtani, M. (1973) Pentylenetetrazol-induced intracellular potential changes of the neurn of the Japanese land snail Euhadra peliomphala. Jap. J. Physiol. 23: 261-274.
Sun, X.P. and Takeuchi, H. (1986) Decreases of action potential amplitudes, in sodium-free and calcium-free conditions, of identifiable giant neurones of an African giant snail (Achatina fulica Ferussac)-I. The right parietal ganglion. Comp. Biochem. Physiol. A84: 19-24.
Sun, X.P., Funase, K., Takeuchi, H. and Kohno, M. (1987) Ionic currents of an identifiable giant neurone, d-RPLN, of an African giant snail (Achatina fulica Ferussac), measured under voltage clamping-I. Inward currents. Comp. Biochem. Physiol. A88: 317-324.
Sweatt, J.D., Volterra, A., Edmonds, B., Karl, K.A., Siegelbaum, S. and Kandel, E.R. (1989) FMRF amide reverses protein phosphorylation produced by 5-HT and cyclic AMP in Aplysia sensory neurones. Nature 342: 275-27.
Tsai, M.C. and Chen, M.L. (1989) A new method for screening anticonvulsants: 1. Effects of anticonvulsants on pentylenetetrazol-induced neuronal activity of the giant African snail, Achatina fulica Ferrusac. Asia Pacific J. Pharmacol. 4:203-207.
Vehovszky, A. and Walker, R.J. (1991) An analysis of the 5-hydroxytryptamine (serotonin) receptor subtypes of central neurones of Helix aspersa. Comp. Biochem. Physiol. C 100: 463-476.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top