跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝俊魁
研究生(外文):Chun-Kuei Hsieh
論文名稱:條件變異數的狀態變換與緩長記憶現象的檢定
論文名稱(外文):Regime Switching in Volatility and the Test of the Long Memory Property
指導教授:林建甫林建甫引用關係
指導教授(外文):Chien-Fu Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:經濟學研究所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:51
中文關鍵詞:波動狀態變換部分整合假性緩長記憶條件變異數股票結構性改變模型設定
外文關鍵詞:volatilityregime switching SWARCHlong memory FIGARCHDGP data generating processstock pricestructural changemodel specificationsimulation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
針對眾所周知之財務資料波動程度的高度相關性,辨別這種相關性是否就是「緩長記憶」在經濟政策、 財務決策、 實證方法、 及計量理論上都具有非常重要的意義。 本文結合 Hamilton and Susmel (1994) 之狀態變換 (regime switching) SWARCH 模型, 以及 BBM (1996) 和 Chung (1998) 之緩長記憶 FIGARCH 模型, 新創相當一般化之 SW(k)-FIGARCH-L(0,d,0) 模型, 同時估計狀態轉變參數及部分差分係數, 使我們既可在狀態變換的前提下檢定緩長記憶假說, 也能在考慮緩長記憶可能存在的前提下檢定是否有狀態變換發生, 並證明波動程度之狀態變換的確會造成相當嚴重的假性緩長記憶問題。 此新模型不但可避免以單純緩長記憶模型估計狀態變換母體所導致的假性緩長記憶問題, 更解決了單純狀態變換模型殘差項平方值仍具高度跨期相關的窘境, 是一個相對優良的模型, 在財務資料的估計上十分具有發展潛力。 根據實證結果,未考慮狀態變換因素前, 台股指數日報酬率的波動程度的確顯現出緩長記憶特徵, 然而同時考慮狀態變換因素後, 緩長記憶特徵不復存在, 僅具中等記憶。
The strong persistence in the volatility of a variety of financial time series is well-known. To determine whether this persistence can be characterized as ''long memory'''' is obviously important in both financial and econometric modelling. In this paper, after summarizing Hamilton and Susmel''s (1994) regime switching SWARCH model and BBM (1996) and Chung''s (1998) long memory FIGARCH for volatility, I propose a general SW(k)-FIGARCH-L(0,d,0) model that allows the estimation of both regime switching parameters and the long memory parameter. In such a framework I am able to test whether the volatility still has long memory after regime switching has been considered and I show that regime switching in volatility can result in spurious long memory. Furthermore, I find the proposed model also solves one of the problems with the standard SWARCH model that squared residuals obtained from the
SWARCH model estimation usually are highly correlated, which implies the simple regime switching mechanism is not able to characterize all the dynamics in volatility. Based on these encouraging results, I believe the proposed model is a promising tool in analyzing financial data. My empirical analysis of the Taiex data shows that the long memory in their volatility will reduce to intermediate memory after regime switching is considered, which represents an interesting example of the spurious long memory in volatility that caused by the regime switching.
1. 前言......................................................1
2. 緩長記憶模型..............................................5
2.1 緩長記憶設定與自迴歸部分整合移動平均 (ARFIMA) 模型......5
2.2 部分整合一般化自迴歸條件變異數非齊一 (FIGARCH) 模型.....9
2.3 緩長記憶的拉氏乘數檢定 (LM 檢定).......................12
3. 馬可夫變換模型...........................................14
4. 台股指數報酬率與 SW-FIGARCH-L 模型.......................18
4.1 緩長記憶檢定...........................................18
4.2 模型設定...............................................19
4.3 SW($k$)-FIGARCH-L($0,d,0$) 的估計方法..................22
4.4 實證結果...............................................25
5. 狀態變換與假性緩長記憶...................................30
6. 結論與未來研究方向.......................................33
參考文獻....................................................36
圖形........................................................39
(1) 呂仁廣 (1998), 條件變異數結構變動的 SWARCH 模型估計, 國立暨南大學經濟學研究所碩士論文。
(2) 洪茂蔚、 鍾經樊、 李丹 (1998), 美元兌新台幣匯率的緩長記憶, 未發表論文。
(3) 管中閔 (1999), 時間數列模型設定的一些問題, <<經濟論文叢刊>>, 27:1, 1--17。
(4) Backus, D.K. and S.E. Zin (1993), Long-memory inflation uncertainty, evidence from the term structure of interest rates,
Journal of Money, Credit, and Banking, 25, 681--700.
(5) Baillie, R.T. (1998), Comment, Journal of Business and Economic Statistics, 16, 273--276.
(6) Baillie, R.T., T. Bollerslev, and H.O. Mikkelsen (1996), Fractionally integrated generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 74, 3--30.
(7) Baillie, R.T., C.-F. Chung, and M.A. Tieslau (1996), Analyzing inflation by the fractionally integrated ARFIMA-GARCH model, Journal of Applied Econometrics, 11, 23--40.
(8) Bollerslev, T. (1986), Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics, 31, 307--327.
(9) Bollerslev, T. and H.O. Mikkelsen (1996), Modeling and pricing long memory in stock market volatility, Journal of Econometrics, 73, 151--184.
(10) Chen, S.-W. and J.-L. Lin (1999), Switching ARCH models of stock market volatility in Taiwan, unpublished manuscript.
(11) Cheung, Y.W. (1993a), Long memory in foreign-exchange rates, Journal of Business and Economic Statistics, 11, 93--101.
(12) Cheung, Y.W. (1993b), Tests for fractional integration: a Monte Carlo investigation, Journal of Time Series Analysis, 14, 331--345.
(13) Chung, C.-F. (1998), Estimating the fractionally integrated GARCH model, preprint.
(14) Chung, C.-F. and R.T. Baillie (1993), Small sample bias in conditional sum-of-squares estimators of fracionally integrated ARMA models, Empirical Economics, 18, 791--806.
(15) Chung, C.-F. and M.-W. Hung (1995), A general model for short-term interest rates, working paper.
(16) de Lima, P., F.J. Breidt, and N. Crato (1994), Modeling long-memory stochastic volatility, manuscript, Department of Economics, Johns Hopkins University, Baltimore, Maryland.
(17) Diebold, F.X. (1986), Modelling the persistence of conditional variance: a comment, Econometric Review , 5, 51--56.
(18) Diebold, F.X. and G.D. Rudebusch (1989), Long memory and persistence in aggregate output, Journal of Monetary Economics, 24, 189--209.
(19) Ding, Z., C.W.J. Granger, and R.F. Engle (1993), A long memory property of stock returns and a new model, Journal of Empirical Finance, 1, 83--106.
(20) Dueker, M.J. (1997), Markov switching in GARCH processes and mean-reverting stock-market volatility, Journal of Business and Economic Statistics , 15, 26--34.
(21) Engle, R.F. (1982), Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987--1007.
(22) Engle, R.F. and C. Mustafa (1992), Implied ARCH models from options prices, Journal of Econometrics, 52, 280--311.
(23) Geweke, J.F. and S. Porter-Hudak (1983), The estimation and application of long memory time series models, Journal of Time Series Analysis , 1, 221--238.
(24) Granger, C.W.J. (1980), Long memory relationships and the aggregation of dynamic models, Journal of Econometrics , 14, 227--238.
(25) Granger, C.W.J. and R. Joyeux (1980), An introduction to long-memory time series models and fractional differencing,
Journal of Time Series Analysis , 1, 15--29.
(26) Gray, S.F. (1996), Modelling the conditional distribution of interest rates as a regime-switching process, Journal of Financial Economics, 42, 27--62.
(27) Greene, M.T. and B.D. Fielitz (1977), Long-term dependence in common stock returns, Journal of Financial Economics , 4, 339--349.
(28) Hamulton, J.D. (1994), Time Series Analysis, New Jersey: Princeton University Press.
(29) Hamilton, J.D. (1996), Specification testing in Markov-switching time-series models, Journal of Econometrics, 70, 127--157.
(30) Hamilton, J.D. and R. Susmel (1994), Autoregressive conditional heteroskedasticity and change in regime, Journal of Econometrics, 64, 307--333.
(31) Harvey, A.C. (1993), Long-memory in stochastic volatility,
manuscript, London School of Economics: London.
(32) Hansen, B.E. (1992), The likelihood ratio test under nonstandard conditions: testing the Markov switching model of GNP, Journal of Applied Econometrics, 7, 61--82.
(33) Hosking, J.R.M. (1981), Fractional differencing, Biometrika , 68, 165--176.
(34) Hosking, J.R.M. (1984), Modeling persistence in Hydrological time series using fractional differencing, Water Resource Research, 20, 1898--1908.
(35) Hurst, H.E. (1951), Long term storage capacity of reservoirs, Transactions of American Society of Civil Engineering, 116, 770--799.
(36) Lamoureux, C.G. and W.D. Lastrapes (1990), Persistence in variance, structural change and the GARCH model, Journal of Business and Economic Statistics, 8, 225--234.
(37) Lo, A.W. (1991), Long term memory in stock market prices,
Econometrica, 59, 1279--1313.
(38) Lobato, I.N. and P.M. Robinson (1997), A nonparametric test for $I(0)$, preprint, Department of Economics, University of Iowa.
(39) Lobato, I.N. and N.E. Savin (1998), Real and Spurious long-memory properties of stock-market data, Journal of Business and Economic Statistics , 16, 261--268.
(40) Nelson, C.R. and C.I. Plosser (1982), Trends and random walks in macroeconomic time series: some evidence and implications, Journal of Monetary Economics, 10, 139--162.
(41) Perron, P. (1989), The great crash, the oil price shock and the unit root hypothesis, Econometrica, 57, 1361--1401.
(42) Robinson, P.M. (1994), Time series with strong dependence,
in C.A. Sims ed., Advances in Econometrics: Sixth World
Congress, 1, 47--95, Cambridge: Cambridge University Press.
(43) Sowell, F. (1992), Modeling long-run behavior with the fractional ARIMA model, Journal of Monetary Economics, 29, 277--302.
(44) Tsay, W.-J. and C.-F. Chung (1998), The spurious regression of fractionally integrated processes,working paper.
(45) Zivot, E. and D.W.K. Andrews (1992), Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis, Journal of Business and Economic Statistics, 10, 251--270.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top