跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 02:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄒傳正
研究生(外文):Chuan-Cheng Tsou
論文名稱:奈米碳管的研製及其場發射特性研究
論文名稱(外文):Fabrication and Field Emission Characteristics of Carbon Nanotubes
指導教授:孫澄源
指導教授(外文):C. Y. Sun
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工程技術研究所材料科技學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:158
中文關鍵詞:奈米碳管場發射電弧放電法網版印刷電漿蝕刻
外文關鍵詞:carbon nanotubesfield emissionDC arc-dishargescreen printingplasma etching
相關次數:
  • 被引用被引用:1
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於奈米碳管具有極高的縱橫比與極小的尖端曲率半徑,因此奈米碳管有著超乎常態的電子場發射特性,低的場發射起始電壓與大的場發射電流密度,使其為電子場發射平面顯示器的良好材料。
在本論文中,以電弧放電法成長奈米碳管。探討奈米碳管的電子場發射特性,同時並探討成長速率與場發射特性的關係,找出成長良好之電子場發射特性的奈米碳管之最佳化成長參數。使用此最佳化成長參數,大量生產奈米碳管。
同時使用網版印刷的厚膜技術,來製備奈米碳管的電子發射源。因此,奈米碳管容易被埋在所調配之網印漿料中,而無法裸露於表面。為了使得奈米碳管裸露於表面,因此使用電漿蝕刻技術來處理試片表面。於不同的網印漿料中各發現一最佳化的電漿蝕刻條件。其中,場發射起始電壓低於1V/m,場發射電流密度大於6000A/cm2。顯示奈米碳管極具場發射平面顯示器應用之潛力。

Due to their high aspect ratios and small tip radii of curvature, carbon nanotubes possess marvelous electron field emission properties, viz. low turn-on voltage (E0) and large emission current density (Je), and have good potential for using as materials in electron emitters of flat panel display.
In this work, we use the technology of DC arc-discharge to grow carbon nanotubes. The optimal grow condition is based on the study of the field emission characteristic of carbon nanotubes, and the relationship between the rate of grow carbon nanotubes and the field emission characteristic of carbon nanotubes. Using this optimal grow condition, it is easy to produce a great mass carbon nanotubes.
We use the screen printing technology to fabricate the carbon nanotube field emitters. Science carbon nanotubes are always buried in paste, in order to expose their tips, a Ar plasma treatment is conducted to polish sample surface. The optimal condition of Ar plasma dry etching is found for different pastes. As a result, the turn on voltage is lower than 1V/m, and the field emission current density is larger than 6000A/cm2.

中文摘要………………………………………………………Ⅰ
英文摘要………………………………………………………Ⅱ
誌 謝………………………………………………………Ⅲ
目 錄………………………………………………………Ⅳ
圖型索引………………………………………………………Ⅵ
表格索引………………………………………………………XV
第一章 緒論…………………………………………1
第二章 導論…………………………………………4
2-1 平面顯示器元件之探討……………………4
2-2 發展歷史……………………………………7
2-3 研究動機……………………………………9
2-4 奈米碳管的成長及其結構分析……………11
2-4-1 奈米碳管的成長……………………………11
2-4-2 奈米碳管的結構分析………………………17
2-5 奈米碳管的場發射特性……………………19
2-5-1 奈米碳管的場發射特性……………………19
2-5-2 場發射元件的基本原理……………………22
2-6 奈米碳管的特性量測………………………25
第三章 奈米碳管的製備及特性量測………………42
3-1 奈米碳管的製備……………………………42
3-2 奈米碳管的特性量測………………………44
3-3 結果與分析…………………………………45
第四章 奈米碳管之場發射平面顯示器的研製……85
4-1 網版印刷技術………………………………85
4-2 奈米碳管之電子場發射顯示器的研製……86
4-2-1 實驗方法……………………………………86
4-2-2 實驗結果……………………………………89
4-3 奈米碳管之平板電子顯示器之表面處理…92
4-3-1 實驗方法……………………………………92
4-3-2 實驗結果……………………………………93
第五章 電子場發射平面顯示器之成果量測………141
第六章 結論…………………………………………145
第七章 未來展望……………………………………147
參考文獻………………………………………………………149
作者簡歷………………………………………………………157
著 作………………………………………………………158

[1] S. Iijima, “Helical microtubules of graphitic carbon”,
Nature, 354, pp.56~58 (1991)
[2] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G.
Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R. E.
Smalley, “Unraveling nanotubes:field emission from an
atomic wire”, Science, 269, pp.1550~1153 (1995)
[3] Walt A. de Heer, A. Chatelain, D. Ugarte, “A carbon
nanotube field emission electron source”, Science, 270,
pp.1179~1180 (1995)
[4] E.S. Kohn, “Cold cathode electron emission from silicon”,
Appl. Phys. Lett., 41, pp.76~81 (1970)
[5] R. N. Thomas, R. A. Wickstron, D. K. Schroder, and H. C.
Nathanson, “Fabrication and some applications of large-
area silicon field emission arrays”, Solid-State
Electronics, 17, pp.155~163 (1974)
[6] D. O. Smith, J. S. Judge, M. Trongello, and P. R. Thomton,
“Microstructure field emission electron source”, U. S.
Patent, 3970887,(1976)
[7] A. M. E. Hoeberechto, “Field emission devices”, U. S.
Patent, 4095133, (1978)
[8] A. M. E. Hoeberechto, and G. G. P. van Gorkom, “Design
technology and behavior of a silicon avalanche cathode”,
J. Vac. Sci. Technol. B, 4, pp.105~107 (1986)
[9] K. Betsui, “Fabrication and operation of silicon micro-
field-emitter arrays”, Presented at the Japanese Physical
Society Meeting
[10] R. B. Marcus, K. Chin, D. Lin, and W. J. Orvis,
“Fabrication of silicon tips with 1nm radius”, Appl.
Phys. Lett. 56, pp.236~238 (1990)
[11] L. N. Yadon, D. Temple, and W. D. Palmer, “Mini-column
silicon field-emitter arrays”, J. Vac. Sci. Technol. B,
13, pp.580~584 (1995)
[12] R. J. Harvey, R. A. Lee, and A. J. Miller, “Aspects of
field emission from silicon diode arrays”, IEEE Trans. on
Electron Devices, 38, pp.2323~2328 (1991)
[13] C. A. Spindt, I. Brodie, L. Humphrey, and E. R.
Westerberg, “Physical properties of thin field emission
cathode with molybdenum cones”, J. Appl. Phys. 47,
pp.5248~5263 (1976)
[14] N. Liu, Z. Ma, and X. Chu, “Fabrication of diamond tips
by the microwave plasma chemical-vapor-deposition
technique”, J. Vac. Sci. Technol. B, 12, pp.1712~1715
(1994)
[15] A. A. Dadykin, and A. G. Naumovets, “A study of stable
low-field electron emission from diamond-like films”,
Diamond and Related Materials, 5, pp.771~774 (1996)
[16] I. Brodie, and C. A. Spindt, “The application of thin
film field emission cathodes to electronic tubes”, Appl.
Surface Sci., 2, pp.149~163 (1979)
[17] F. J. Himpsel, J. A. Knapp, and J. A. Van Vechten,
“Quantum photoyield on diamond(111)-a stable negative-
affinity emitter”, Phys. Rev. B, 20, pp.624~627 (1976)
[18] N. S. Xu, R. V. Latham, and Y. Tzeng, “Field-dependence
of the area-density of ‘cold’ electron emission sites on
broad-area CVD diamond films”, Electronics Lett., 29,
pp.1596~1597 (1993)
[19] Yu. V. Gulyaev, N. I. Sinitsyn, G. V. Torgashov, Sh. T.
Mevlyut, A. I. Zhbanov, Yu. F. Zakharchenko, Z. Ya.
Kosakovskaya, L. A. Chernozatonskii, O. E. Glukhova, and
I. G. Torgashov, “Work function estimate for electrons
emitted from nanotube carbon claster films”, J. Vac. Sci.
Technol. B, 15, pp.422~424 (1997)
[20] Q. H. Wang, T. D. Corrigan, J. Y. Dai, and R. P. H. Chang,
“Field emission from nanotube bundle emitters at low
fields”, Appl. Phys. Lett., 70, pp.3308~3310 (1997)
[21] Y. Saito, K. Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F.
Ikazaki, M. Yumura, A. Kasuya, and Y. Nishina, “Conical
beams from open nanotubes”, Nature, 389, pp.554~555 (1997)
[22] Y. Satio, K. Hamaguchi, T. Nisihno, K. Hata, K. Tohji, A.
Kasuya, and Y. Nishina, “Field emission patterns from
single-walled carbon nanotubes”, Jpn. J. Appl. Phys., 36,
pp.L1340~L1342 (1997)
[23] Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E.
W. Seelig, and R. P. H. Chang, “A nanotube-based field
emission flat panel display”
[24] J. M. Bonard, J. P. Salvetat, T. Stockli, Walt A. de Heer,
L. Forro, and A. Chatelain, “Field emission from single-
wall carbon nanotube films”, Appl. Phys. Lett., 73,
pp.918~920 (1998)
[25] S. Uemura, T. Nagasako, J. Yotani, T. Shimojo, and Y.
Saito, “Carbon nanotube FED Elements”, SID 98 DIGEST,
39, pp.1052~1055 (1998)
[26] Y. Satio, K. Hamaguchi, S. Uemura, K. Uchida, Y. Tasaka,
F. Ikazaki, M. Yumura, A. Kasuya, and Y. Nishina, “Field
emission from multi-walled carbon nanotubes and its
application to electron tubes”, Appl. Phys. A, 67,
pp.95~100 (1998)
[27] Y. Chen, S. Patel, Y. Ye, D. T. Shaw,and L. Guo, “Field
emission from aligned high-density graphitic nanofibers”,
Appl. Phys. Lett., 73, pp.2119~2121 (1998)
[28] O. M. Kuttel, O. Groening, C. Emmenegger, and L.
Schlapbach, “Electron field emission from phase pure
nanotube films grown in a methane/hydrogen plasma”, Appl.
Phys Lett., 73, pp.2113~2115 (1998)
[29] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A.
M. Cassell, and H. Dai, “self-oriented regular arraya of
carbon nanotubes and their field emission properties”,
Science, 283, pp.512~514 (1999)
[30] Edison, T. A., U. S. Patent 470925, (1892)
[31] P. Schutzenberger, and L. Schutzenberger, Compt. Rend.,
111, 774, (1980)
[32] C. H. Pelabon, Compt. Rend., 137, 706, (1905)
[33] R. Bacon, J. Appl. Phys., 31, p.283 (1960)
[34] C. Herring, and J. K. Galt, Phys. Rev., 85, p.1060 (1952)
[35] A. P. Levitt, in Whisker Technolog, Wiley-Interscience,
New York, (1970)
[36] A. W. Moore, A. R. Ubbelohde, and D. A. Young, Br. J.
Appl. Phys., 13, p.393 (1962)
[37] L. C. F. Blackman, and A. R. Ubbelohde, Proc. R. Soc.,
A266, 20, (1962)
[38] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and
R. E. Smalley, Nature, 318, p.162 (1985)
[39] P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E.
Smalley, “Nanotube nanodevice”, Science, 278, pp.100~103
(1997)
[40] C. Journet, and P. Bernier, “Production of carbon
nanotubes”, Appl. Phys A 67, pp.1~9 (1998)
[41] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M.
P. Siegal, and P. N. Provencio, “Synthesis of large
arrays of well-aligned carbon nanotubes on glass”,
Science, 282, pp.1105~1107 (1998)
[42] J. Kong, A. M. Cassell, and H. Dai, “Chemical vapor
deposition of methane for single-walled carbon
nanotubes”, Chem. Phys. Lett., 292, pp.567~574 (1998)
[43] J. M. Mao, L. F. Sun, L. S. Qian, Z. W. Pan, B. H. Chang,
W. Y. Zhou, G. Wang, and S. S. Xie, “Growth of carbon
nanotubes on cobalt disilicide precipitates by chemical
vapor deposition”, Appl. Phys. Lett., 72, pp.3297~3299
(1998)
[44] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, M. P.
Siegal, and P. N. Provencio, “Growth of highly oriented
carbon nanotubes by plasma-enhanced hot filament chemical
vapor deposition”, Appl. Phys. Lett., 73, pp.3845~3847
(1998)
[45] Y. Zhang, H. Gu, and S. Iijima, “Single-wall carbon
nanotubes synthesized by laser ablation in a nitrogen
atmosphere”, Appl. Phys. Lett., 73, pp.3827~3829 (1998)
[46] H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun,
and M. S. Dresselhaus, “Large-scaie and low-cost
synthesis of single-walled carbon nanotubes by the
catalytic pyrolysis of hydrocarbon”, Appl. Phys. Lett.,
72, pp.3282~3284 (1998)
[47] B. Chapman, “Glow discharge processes sputtering and
plasma etching”, Brian Chapman, pp.77~138
[48] T. W. Ebbesene, “Carbon nanotubes preparation and
properties”, CRC Press, Boca Raton, New York, London,
Tokyo (1997)
[49] S. Bandow, S. Asaka, X. Zhao, Y. Ando, “purification and
magnetic properties of carbon nanotubes”, Appl. Phys. A
67, pp.23~27 (1998)
[50] A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman,
E. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann,
D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C.
Eklund, and R. E. Smalley, “Large-scale purification of
single-wall carbon nanotubes: process, product, and
characterization”, Appl. Phys. A 67, pp.29~37 (1998)
[51] M. Endo, S. Iijima, “Carbon nanotubes”, NEC, Japan,
(1996)
[52] O. M. Yevtushenko, G. Y. Slepyan, S. A. Malsimenko, A.
Lakhtakia, and D. A. Romanov, “Nonlinear electron
transport effects in a chiral carbon nanotubes”, Phys.
Rev. Lett., 79, pp.1102~1105 (1997)
[53] P. G. Collins, and A. Zettl, “Unique characteristics of
cold cathode carbon-nanotube-matrix field emitters”,
Phys. Rev. B 55, pp.9391~9399 (1997)
[54] A. Modinos, “Field thermionic and secondary electron
emission spectroscopy”, Plenum Press, New York, pp.1~18
(1938)
[55] D.A. Buck, and K. R. Shoulders, “An approch to
microminiature systems”, in Proc. Eastern Joint Computer
Conf, pp.55~59, (AIEE, New York 1958)
[56] H. Jantoljak, J. P. Salvetat, L. Forro, and C. Thomsen,
“Low-energy Raman-active phonos of multiwalled carbon
nanotubes”, Appl. Phys A 67, pp.113~116 (1998)
[57] A. V. Bazhenov, V. V. Kveder, A. A. Maksimov, I. I.
Tartakovskii, R. A. Oganyan, Yu. A. Ossipyan, and A. I.
Shalynin, “Raman scattering of light and IR absorption in
carbon nanotube”, J. Experimental and Theoretical Phys.,
86, pp.1030~1034 (1998)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊