(34.237.124.210) 您好!臺灣時間:2021/02/25 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李良倫
研究生(外文):Lang-Lung Lee
論文名稱:碳化矽分離膜之化學氣相沉積與陶瓷先驅高分子改質
論文名稱(外文):Modification of Silicon Carbide Separation Membrane by Chemical Vapor Deposition and Preceramic Coating
指導教授:蔡大翔
指導教授(外文):Dah-Shyang Tsai
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:202
中文關鍵詞:化學氣相沉積碳化矽陶瓷先驅高分子孔徑分佈透選率活化擴散聚二甲基矽烷分離膜
外文關鍵詞:Chemical Vapor DepositionSilicon CarbidePreceramic polymerpore size distributioinpermselectivityactivated diffusionpolydimethylsilaneseparation membrane
相關次數:
  • 被引用被引用:2
  • 點閱點閱:279
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
碳化矽(SiC)為具有高度共價鍵特性的陶瓷材料,具有高度的安定性、高機械強度、耐腐蝕性、質輕、熔點高的特性,無機氣體分離膜的應用著眼於高分子膜無法使用的惡劣環境,使用過程保持其透選特性不變,氣體分離膜在高溫時必須要有充份的安定性,耐高溫,耐腐蝕,不變質,所以碳化矽是相當適合氣體分離膜的合成物質。
化學氣相沉積以SiH4/C2H2/Ar反應系進行,在孔洞內沉積固體的改質法,需在透過率與選擇率間做妥協。 縮小孔徑有助於提升選擇率,但將會犧牲透過率,將兩只透過率相近的支撐材,一置於體積/表面積比值大的環境,一置於體積/表面積比值小的環境,同樣的孔徑縮小的效果,後者犧牲之透過率較小。 因此改質在體積/表面積受控制的小室中進行,改質的效果可用量測所得之氣相反應速率常數與表面反應速率常數代入數學模式中,預測多孔材孔徑的移動,從而計算平均孔徑下降與透過率之下降,其中塗覆兩層非對稱支撐材08hd11樣品的流動平均孔徑由297 nm縮小至14 nm,而透氣率亦減少93%。
陶瓷先驅高分子改質研究在自製的碳化矽多孔支撐材上進行,支撐材骨幹是以注漿成型,再以次微米的粉末覆於內側,進行二次燒結得到非對稱性的改質支撐材。 陶瓷先驅高分子的構想,基本上是承襲碳分子篩的原理,高分子的碳氫元素在裂解時,以小分子的形態脫離高分子主鍊,這些小分子破片穿過分離膜產生分子級尺寸的管道,這些小於1 nm的管道是氣體分離機制的關鍵。聚二甲基矽烷(polydimethylsilane)先驅高分子塗覆改質後經熱轉化反應(thermolytic reaction),部分轉化成聚碳矽烷(polycarbosilane),再經氧熟化反應交鏈固定,最後熱裂解成膜。裂解溫度對透過性有很大的影響,573 K裂解所得到的氣體分離膜於473 K時其H2/N2選擇率為100,而氫氣透過率為8.9×10-8 mol/Pa sec m2,在873 K裂解所產生的氣體分離膜在473 K時其H2/N2選擇率為40,氫氣透過率為4.9×10-9 mol/Pa sec m2,轉化熟化過程以TGA與DTA熱分析瞭解之,膜孔洞分佈以BET量測分析。
Abstract
Silicon carbide is a ceramic material of high covalency. It possesses attractive characteristics, such as light, high stability, high mechanical strength, corrosion resistance, and high melting point. The inorganic membrane is targeted on the applications under hostile environment, which the polymeric membrane is not accessible, for instance, high temperature. The inorganic membrane for gas separation is supposed to be sufficiently stable under high temperature and resistant to acid and base. It permeation properties should be enduring for reasonable working time. Therefore, silicon carbide is an ideal candidate for synthesis of the inorganic membrane.
The modification of chemical vapor deposition is carried out in the SiH4/C2H2/Ar reaction system. The modification, by depositing solid in fine pores, often needs to compromise between the permeation rate and selectivity. Reduction in pore size enhances the selectivity of membrane, yet the permeance is sacrificed for pore narrowing. If two porous supports of similar permeance are placed in two environments of different volume/surface V/S ratios, the one in the environment of small V/S suffers less reduction in permeance than the one modified in large V/S for the same pore narrowing effect. Therefore, a better modification is achieved in a chamber of designed V/S ratio. The modification effect of chemical vapor deposition can be predicted by the mathematical model, which calculates the shifting of pore size distribution of support from the experimental gas-phase and surface reaction constants, subsequently the reduction in pore size and the permeance. The flow-average pore radius of one modified specimen 08hd11, is reduced from 297 to 14 nm for a price of 93% reduction in permeance.
The modification of preceramic polymer is carried out on the home-made silicon carbide porous support. The asymmetric support is made by slip casting and sintering of a ceramic tube, then using submicron powder to carry out another casting and sintering to form an inner layer of finer pores. The basic idea behind the preceramic polymer modification is from the fabrication of carbon molecular sieve. Elements of hydrogen and carbon, in form of small molecules, escape from the backbone of polymer, and channel through the polymer matrix. Channeling of these molecular debris creates pores of molecular sizes. These minute pores (< 1nm) are crucial to the gas separation mechanism.
The polydimethylsilane (PMS) coating undergoes thermolytic reaction, which converts part of PMS into polycarbosilane. The subsequent oxygen curing further crosslinks the preceramics. Finally the preceramic is pyrolyzed into a membrane capable of gas separation. The pyrolysis temperatures has a significant influence on membrane permeance and permselectivity. For the membrane pyrolyzed at 573 K, H2 permeance of is 8.9×10-8mol/Pa sec m2 and permselectivity of H2/N2 is 100 at permeation temperature of 473 K. For the membrane pyrolyzed at 873 K, H2 permeance is 4.9×10-9 mol/Pa sec m2, and H2/N2 selectivity is 40 at permeation temperature of 473 K. Thermal treament of preceramics are analyzed, using TGA and DTA. The pore size distribution of the pyrolyzed preceramic is measured by BET.
封面
中文摘要
英文摘要
誌謝
目錄
圖目錄
表目錄
第一章 碳化矽性質與合成
1.1 碳化矽材料基本性質
1.2 碳化矽的合成方法
1.3 非晶或微晶碳化矽之發展、應用、與性質
第二章 陶瓷多孔膜的發展
2.1 碳分子篩膜
2.2 氧化矽氣體分離膜
2.3 沸路氣體分離膜
2.4 碳化矽氣體分離膜
2.5 多孔氣體分離膜之透過率與透選率
2.6 多孔膜中氣體輸送的機構
2.7 氣體分離之緻密鈀膜
2.8 陶瓷多孔膜之應用
理論分析
第三章 低壓化學氣相沉積改質碳化矽多孔膜理論分析
3.1 擴散機構與孔洞構造數學模式
3.2 沉積固體對孔徑分佈的影響
3.3 沉積對氣體通過多孔膜影響
實驗步驟與藥品
第四章 SiH/CH/Ar低壓化學氣相沉積改質碳化矽多孔膜與陶瓷先驅高分子改質碳化矽支撐材
4.1 化學氣相沉積改質部份
4.2 實驗藥品與氣體
4.3 實驗設備與儀器
4.4 流動平均孔徑之計算
陶瓷先驅高分子改質碳化矽支撐材
4.5 實驗步驟
4.6 實驗藥品與氣體
4.7 實驗設備與儀器
理論研究
第五章 化學氣相沉積改質之理論分析
5.1 單一孔徑多孔膜之改質深度
5.2 具有孔徑分佈的多孔膜改質
第六章 化學氣相沉積改質碳化矽技撐材
6.1 SiH/CH/Ar 低壓化學氣相沉積動力
6.2 碳化矽多孔膜的改質
第七章 陶瓷先驅高分子改質碳化矽支撐材
7.1 碳化矽中間層製備與孔洞分佈
7.2 陶瓷先驅高分子改質-聚二甲基矽烷(PMS)
7.3 熟化的先驅高分子裂解殘餘物之 BET 量測
7.4 陶瓷先驅高分子IR分析
7.5 陶瓷先驅高分子的外觀
7.6 碳化矽多孔膜經二甲基矽烷改質後氣體透過率
7.7 乙醯丙酮酸酯鋁與聚二甲矽烷之液改質
結論
參考文獻
附錄
符號索引
作者簡介及論文著作
參 考 文 獻
1. K. Yamada and M. Mohri, “Properties and Applications of Silicon Carbide Ceramics,” pp.13, in Silicon Carbide Ceramics —1, edited by S. Somiya and Y. Inomata, Elsevier, New York (1991).
2. Y. Inomata, “Crystal Chemistry of Silicon Carbide,” pp.1, in Silicon Carbide Ceramics —1, edited by S. Somiya and Y. Inomata, Elsevier, New York (1991).
3. P. T. B. Shaffer, “A Review of the Structure of Silicon Carbide,” Acta. Crystallographica, B25, 477 (1969).
4. Verma, A. R. & Krishna, P., Polymorphism and Polytypism in Crystals. John Wiley, New York, 1966.
5. M. Bhatnagar, B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for Power Devices,” IEEE Transaction on Electron Devices, 40, 645 (1993).
6. N. F. Shin, J. Y. Chen, T. S. Jen, J. W. Hong, and C. Y. Chang, “Hydrogenated Amorphous silicon carbide double graded-gap p-i-n thin film light-emitting diodes” IEEE Electron Devices Letters, vol. 14, [9] 453, (1993).
7. K. Tanaka, Report for Research of High Purity Silicon Carbide. National Institute for Research in Inorganic Materials, p.4. (1967)
8. Okabe, Y., Hojo J. & Kato A., “Formation of the fine silicon carbide powders by a vapor phase method,” J. Less-Common Met., 68, 29 (1979).
9. Okabe, Y., Hojo J. & Kato A., “Formation of silicon carbide powders by the vapor phase reaction of the SiH4-CH4-H2 system,” J. Chem. Soc. Japan, 188, (1980).
10. M. Sadakata, H. Baba, M. Sato, T. Sakai, “Vapor-Phase Synthesis of ultrafine particles of SiC from a premixed SiH4-C2H2 gas,” International Chemical Engineering, 31, 468 (1991).
11. S. Yajima, Y. Hasegawa, J. Hayashi, M. Iimura, “Synthesis of continuous silicon carbide fiber with high tensile strength and high Young’s modulus,” J. Mater. Sci., 13, 2569 (1978).
12. S. Yajima, “Special Heat Resisting Materials from Organometallic Polymers,” Ceram. Bull., 62, 893 (1983).
13. J. M. Zeigler and F. W. Gordon Fearon, (editors), Silicon-Based Polymer Science, published by American Chemistry Society, Washington, DC (1990).
14. H. R. Kricheldorf (editor), Silicon in Polymer Synthesis, p.243, springer, Berlin (1996).
15. S. Yajima, T. Shishido, and K. Okamura, “SiC Bodies Sintered with Three Dimensional Cross-Linked Polycarbosilane,” Ceram. Bull., 56 [12] 1060 (1977).
16. S. Yajima, T. Shishido, and H. Kayano, “Heat-resistant Fe-Cr alloy with polycarbosilane as binder,” Nature, 264, 237 (1976).
17. Y. Nakamura and S. Yajima, “Silicon Carbide Igniter Produced with Polycarbosilane,” Ceram. Bull., 61, 572 (1982).
18. S. Yajima, T. Shishido, H. Kayano, K. Okamura, M. Omori, and J. Hayashi, “SiC sintered bodies with three dimensional polycarbosilane as binder,” Nature, 264, 238 (1976).
19. D. J. Pysher, K. C. Goretta, R. S. Hodder, and R. E. Tressler, “Strengths of Ceramic Fibers at Elevated Temperatures,” J. Am. Ceram. Soc., 72 [2] 284 (1989).
20 S. Yajima, K. Okamura, J. Hayashi, M. Omori, “Synthesis of continuous SiC fiber with high tensile strength,” J. Am. Ceram. Soc., vol.59, 324 (1976).
21. T. Mah, N. L. Hecht, D. E. McCullum, J. R. Hoenigman, H. M. Kim, A. P. Katz, H. A. Lipsitt, “Thermal Stability of SiC fibers (Nicalon),” J. Mater. Sci., 19, 1191 (1984).
22. G. Simon and A. R. Bunsell, “Mechanical and Structural Characterization of the Nicalon Silicon Carbide Fiber,” J. Mater. Sci., 19, 3649 (1984).
23. Y. Nakamura and S. Yajima, “Silicon Carbide Igniter Produced with Polycarbosilane,” Ceram. Bull., 61 [5] 572 (1982).
24. S. Yajima T. Iwai, T. Yamamura, K. Okamura, and Y. Hasegawa, “Synthesis of a polytitanocarbosilane and its conversion into inorganic compounds,” J. Mater. Sci., 16, 1349 (1981).
25. S. Yajima, T. Shishido, H. Kayano, K. Okamura, M. Omori, and J. Hayashi, “SiC sintered bodies with three dimensional polycarbosilane as binder,” Nature, 264, 238 (1976).
26. F. Babonneau, G. D. Soraru, “Synthesis and Characterization of Si-Zr-C-O ceramics from polymer precusors,” J. European Ceramic Society, 8, 29 (1991).
27. T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura and T. Nagasawa, “High-strength alkali-resistant sintered fibre stable to 2200oC,” Nature, 391, 773 (1998).
28. T. Yamamura, T. Ishikawa, T., Shibuya, M. Hisayuki, T. and Okamura, “Development of a new continuous Si-Ti-C-O fiber using an organometallic polymer precusor,” J. Mater. Sci., 23, 2589 (1988).
29. T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, “Production mechanism of polyzirconocarbosilane using zirconium(IV) acetylacetonate and its conversion of the polymer into inorganic materials,” J. Mater. Sci., 33, 161 (1998).
30. F. Babonneau, G. D. Soraru, K. J. Thorne, J. D. Mackenzie, “Chemical characterization of Si-Al-C-O precusor and its pyrolysis,” J. Am. Ceram. Soc., 74, 1725 (1991).
31. G. E. LeGrow, T. F. Lim, J. Lipowitz, and R. S. Reaoch, “Ceramics from Hydridopolysilazane,” Am. Ceram. Soc. Bull., 66, 363-67 (1987).
32. J. Lipowitz, “Polymer-Derived Ceramic Fibers,” Am. Ceram. Bull., 70, 1888 (1991)
33. J. Koresh and A. Soffer, “Study of Molecular Sieve Carbon,” J. C. S. Faraday I, 76, 2457 (1980).
34. J. E. Koresh and A. Soffer, “Molecular Sieve Carbon Permselective Membrane,” Separation Science and Technology, 18 [8] 723 (1983).
35. J. E. Koresh and A. Soffer, “The Carbon Molecular Sieve Membrane. General Properties and the Permeability of CH4/H2 Mixture,” Separation Science and Technology, 22 [2,3] 973 (1987).
36. T. G. Lamond, J. E. Metcalf III, P. L. Walker, Carbon, 3, 59 (1965).
37. P. L. Walker, L. G. Austin, and S. P. Nandi, Chem. Phys. Carbon, 2, 257 (1966).
38. J. Petersen and K. Haraya, “Asymmetric Capillary Molecular Sieve Carbon Membranes from Kapton,” 480, ICOM’96 Proceeding, Yokohama (1996).
39. H. Suda, S. Kazama, and K. Haraya, “Gas Separation with Carbon Molecular Sieve Membranes Prepared from Several Types of Polyimides,” 460, ICOM’96 Proceeding, Yokohama (1996).
40. J. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, “Simultaneous Improvement of Permeance and Permselectivity of 3,3’,4,4’-Biphenyltetracaboxylic Dianhydride-4,4’-Oxydianiline Polyimide Membrane by Carbonization,” Ind. Eng. Chem. Res., 34, 4364 (1995).
41. J. Petersen, M. Matsuda, K. Haraya, “Capillary Carbon Molecular Sieve Membrane Derived From Kapton for High Temperature Gas Separation,” J. Memb. Sci., 131, 85 (1997).
42. Y. Kusuki, H. Shimazaki, N. Tanihara, S. Nakanishi, T. Yoshinaga, “Gas Permeation Properties and Characterization of Asymmetric Carbon Membranes Prepared by Pyrolying Asymmetric Polyimide Hollow Fiber Membrane,” J. Memb. Sci., 134, 245 (1997).
43. J.-i. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, “Simultaneous improvement of permeance and permselectivity of 3,3’,4,4’-biphenyltetracarboxylic dianhydride-4,4’-oxydianiline polyimide membrane by carbonization,” Ind. Eng. Chem. Res., 34, 4364 (1995).
44. J.-i. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, and S. Morooka, “Separation of Ethane/Ethylene and Propane/Propylene Systems with a Carbonized BPDA-pp’ODA Polyimide Membrane,” Ind. Eng. Chem. Res., 35, 4176 (1996)
45. J.-i. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, “Effect of Oxidation on Gas Permeation of Carbon Molecular Sieving Membranes Based on BPDA-pp’ODA Polyimide,” Ind. Eng. Chem. Res., 36, 2134 (1997)
46 J.-i. Hayashi, H. Mitzuta, M. Yamamoto, K. Kusakabe, and S. Morooka, “Pore size control of carbonized BPDA-pp’ODA polyimide membrane by chemical vapor deposition,” J. Memb. Sci., 124, 243 (1997).
47. K. Kusakabe, M. Yamamoto, S. Morooka, “Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation,” J. Memb. Sci., 149, 59 (1998).
48. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties, Academic Press, p.27, 1986.
49. G. R. Gavalas, C. E. Megiris, and S. W. Nam, “Deposition of H2-Permselectivity SiO2 Films,” Chemical Engineering Science, Vol. 44 [9] 1829 (1989).
50. S. W. Nam and G. R. Gavalas, “Stability of H2-Permselective SiO2 Films Formed by CVD”, AIChE Symp. Ser., 268, 68 (1989).
51. M. Tsapatsis, S. Kim, S. W. Nam, and G. Gavalas, “Synthesis of Hydrogen Perselective SiO2, TiO2, Al2O3, and B2O3 Membranes from the Chloride Precusors,” Ind. Eng. Chem. Res., 30, 2152 (1991)
52. C. E. Megris and J. H. E. Glezer, “Synthesis of H2-Permselective Membranes by Modified Chemical Vapor Deposition. Microstructure and Permselectivity of SiO2/C/Vycor Membranes,” Ind. Eng. Chem. Res., 31, 1293 (1992).
53. S. Yan, H. Maeda, K. Kusakabe, S. Morooka, and Y. Akiyama, “Hydrogen-Permselective SiO2 Membrane Formed in Pores of Alumina Support Tube by Chemical Vapor Deposition with Tetraethyl Orthosilicate,” Ind. Eng. Chem. Res., 33, 2096 (1994).
54. S. Morooka, S. Yan, K. Kusakabe, Y. Akiyama, “Formation of Hydrogen-permselective SiO2 Membrane in Macropores of -alumina support tube by thermal decomposition of TEOS,” J. Memb. Sci., 101, 89 (1995).
55. B. K. Sea, K. Kusakabe, and S. Morooka, “Pore Size Control and Gas Permeation Kinetics of Silica Membranes by Pyrolysis of Phenyl-Substituted Ethoxysilanes with Cross-Flow Through a Porous Support Wall,” J. Memb. Sci., 130, 41 (1997).
56. J. C. S. Wu, H. Sabol, G. W. Smith, D. L. Flowers, P. K. T. Liu, “Characterization of Hydrogen-Permselective Microporous Ceramic Membranes,” J. Memb. Sci., 96, 275 (1994).
57. S. Kitao and M. Asaeda, “Gas Separation Performance of Thin Porous Silica Membrane Prepared by Sol-Gel and CVD Treatment,” Key Engineering Materials, 61༖, 267 (1991).
58. N. K. Raman and C. J. Brinker, “Organic Template Approach to Molecular Sieving Silica Membranes,” J. Memb. Sci., 105, 273 (1995).
59. B. N. Nair, T. Yamaguchi, T. Okubo, H. Suematsu, K. Keizer, S. I. Nakao, “Sol-Gel Synthesis of Molecular Sieving Silica Membranes,” J. Memb. Sci., 135, 237 (1997).
60. R. M. de Vos and H. Verweij, “Improved Performance of Silica Membranes for Gas Separation,” J. Memb. Sci., 143, 37 (1998).
61. Y. Yan, M. E. Davis, G. R. Gavalas, “Preparation of Highly Selective Zeolite ZSM-5 Membranes by a Post-Synthetic Coking Treatments,” J. Memb. Sci., 123, 95 (1997).
62. K. Aoki, K. Kusakabe, S. Morooka, “Gas Permeation Properties of A-type Zeolite Membrane Formed on Porous Substrate by Hydrothermal Synthesis,” J. Memb. Sci., 141, 197 (1998).
63. Z. A. E. P. Vroon, K. Keizer, A. J. Burggraaf, H. Verweij, “Preparation and Characterization of Thin Zeolite MFI Membranes on Porous Supports,” J. Memb. Sci., 144, 65 (1998).
64. M.-D. Jia, B. Chen, R. D. Noble, J. L. Falconer, “Ceramic-Zeolite composite membranes and their application for separation of vapor/ gas mixtures,” J. Memb. Sci., 90, 1 (1994).
65. M. Niwa, K. Yamazaki, Y. Murakami, “Fine Control of the pore opening size of zeolite ZSM-5 by Chemical Vapor Deposition of Silicon Methoxide,” J. Phys. Chem., 90, 6233 (1986).
66. E. Piera, A. Giroir-Fendler, J. A. Dalmon, H. Moueddeb, J. Coronas, M. Menendez, J. Santamaria, “Separation of Alcohols and Alcohols/O2 Mixtures Using Zeolite MFI Membranes,” J. Memb. Sci., 142, 97 (1998).
67. A. J. Burggraaf, Z. A. E. P. Vroon, K. Keizer, and H. Verweij, “Permeation of Single Gases in Thin Zeolite MFI Membranes,” J. Memb. Sci., 144, 77 (1998).
68. K. Kusakabe, S. Yoneshige, A. Murata, S. Morooka, “Morphology and gas permeance of ZSM-5-type zeolite membrane formed on a porous -alumina support tube,” J. Memb. Sci., 116, 19 (1996).
69. Y. Yan, M. E. Davis, G. R. Gavalas, “Preparation of Zeolite ZSM-5 Membranes by In-situ Crystallization on Porous -Al2O3,” Ind. Eng. Chem. Res., 34, 1652 (1995).
70. E. J. Grosgogeat, J. R. Fried, R. G. Jenkins, and S. T. Hwang, “A Method for the Determination of the Pore Size Distribution of Molecular Sieve Materials and its Application to the Characteriztion of Partially Pyrolyzed Polysilastyrene/Porous Glass Composite Membranes,” J. Memb. Sci., 57, 237 (1991).
71. A. B. Shelekhin, E. J. Grosgogeat, and S. T. Huang, “Gas Separation Properties of a New Polymer/Inorganic Composite Membrane,” J. Memb. Sci., 66, 129 (1991).
72. K. Kusakabe, Z. Li, H. Maeda, S. Morooka, “Preparation of Supported Composite Membrane by Pyrolysis of Polycarbosilane for Gas Separation at High Temperature,” J. Memb. Sci., 103, 175 (1995).
73. Z. Li, K. Kusakabe, S. Morooka, “Preparation of thermostable Amorphous Si-C-O Membrane and Its Application to Gas Separation at Elevated Temperature,” J. Memb. Sci., 118, 159 (1996).
74. Z. Li, K. Kusakabe, S. Morooka, “Pore Structure and Permeance of Amorphous Si-C-O Membranes with High Durability at Elevated Temperature,” Sep. Sci. and Technol., 32 [7] 1233 (1997).
75. S. V. Sotirchos, V. N. Burganos, “Transport of gases in porous membranes,” MRS Bull., March 41 (1999).
76. R. M. Barrer, “Porous crystal membrane,” J. Chem. Soc. Fara. Trans., 86, [7] 1123 (1996).
77. R. C. Hurlbert, J. O. Konecny, “Diffusion of hydrogen through palladium,” J. Chem. Phys., 34, 655 (1961).
78. N. Itoh, “A membrane reactor using Palladium,” AIChE. J. 33(9) 1576 (1987).
79. D. J. Edlund, W. A. Pledger, “Thermolysis of hydrogen sulfide in a metal-membrane reactor,” J. Memb. Sci., 77, 264 (1993).
80. S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda and E. Kikuchi, “Separation of Hydrogen Through Palladium Thin Film Supported on a Porous Glass Tube,” J. Memb. Sci., 56, 303 (1991).
81. S. Uemiya, T. Matsuda, and E. Kikuchi, “Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics,” J. Memb. Sci., 56, 315(1991).
82. N. Itoh, R. Govind, “Development of a novel oxdiative palladium membrane reactor,” AIChE. Symp. Ser., 268, 10 (1989).
83. J. Schmitz, L. Lucke, F. Herzog and D. Glaubitz, “Permeation membranes for the production of hydrogen at high temperature,” in T. N. Vezirogluand A. N. Protsenko (Eds.), Hydrogen Energy Progress VII. Vol. 2, Int. Assoc. Hydrogen Energy, Pergamon, Oxford, p.81, 1988.
84. Z. Y. Li, H. Masda, K. Kusakabe, S. Morooka, H. Anzai, S. Akiyama, “Preparation of palladium-silveraloy membranes for hydrogen separation by spray pyrolysis method,” J. Memb. Sci. 78, 247 (1993).
85. S. Yan, H. Maeda, K. Kusakabe, and S. Morooka, “Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation,” Ind. Eng. Chem. Res., 33, 616 (1994).
86. H. P. Hsieh, Inorganic Membranes for Separation and Reaction, Elsevier, Amsterdam (1996).
87. G. R. Gallaher, P. K. T. Liu, “Characterization of ceramic membranes I. Thermal and hydrothermal stabilities of commerical 40A membranes,” J. Memb. Sci. 92, 29 (1994).
88. Himmelblau, D. M. and Bischoff, K. B., Process Analysis and Simulation, p.67, Wiley, New York, (1968).
89. Y. S. Lin, “A theoretical analysis on pore size change of porous ceramic membranes after modification,” J. Memb. Sci., 79, 55 (1993).
90. W. Strieder and S. Prager, “Knudsen flow through a porous medium,” The Physics of Fluids, 11, 2544 (1968).
91. H. L. Weissberg, “Effective diffusion coefficient in porous media,” J. Appl. Phys., 34, 2636 (1963).
92. F. G. Ho, and W. Strieder, “Asymptotic expansion of the porous medium, effective diffusion coefficient in the Knudsen number,” J. Chem. Phys., 70, 5635 (1979).
93. Y. S. Lin, and A. J. Burggraaf, “Experimental studies on pore size change of porous ceramic membranes after modification,” J. Memb. Sci., 79, 65 (1993).
94. F. A. L. Dullien, Porous Media Fluid Transport and Pore Structure, p.201, Academic Press, New York (1979).
95. S. Kitao, and M. Asaeda, “Gas separation performance of thin porous silica membrane prepared by sol-gel and CVD methods,” Key Engineering Materials, 61༖, 267 (1991).
96. T. Sorita, S. Shiga, K. Ikuta, Y. Egashira, and H. Komiyama, “The formation mechanism and step coverage quality of TEOS-SiO2 films studied by the micro/macrocavity method,” J. Electrochem. Soc., 140, 2952 (1993b).
97. L. S. Hong, Y. Shimogaki, Y. Egashira, and H. Komiyama, “Study of the reaction of Si2H6 in the presence of C2H2 in synthesis of SiC films by LPCVD using a macro/microcavity method,” J. Electrochem. Soc., 139, 3652 (1992).
98. R. J. Buss, P. Ho., W. G. Breiland, and M. E. Coltrin, “Reactive Sticking Coefficients for Silane and Disilane on Polycrystalline Silicon,” J. App. Phys., 63 [8] 2808 (1988).
99. P. K. Lin, and D. S. Tsai, “Preparation and analysis of a silicon carbide composite membrane,” J. Am. Ceram. Soc., 80 [2] 365 (1997).
100. R. M. German, Liquid phase sintering, Plenum Press, New York (1985).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔