|
參 考 文 獻 1. K. Yamada and M. Mohri, “Properties and Applications of Silicon Carbide Ceramics,” pp.13, in Silicon Carbide Ceramics —1, edited by S. Somiya and Y. Inomata, Elsevier, New York (1991). 2. Y. Inomata, “Crystal Chemistry of Silicon Carbide,” pp.1, in Silicon Carbide Ceramics —1, edited by S. Somiya and Y. Inomata, Elsevier, New York (1991). 3. P. T. B. Shaffer, “A Review of the Structure of Silicon Carbide,” Acta. Crystallographica, B25, 477 (1969). 4. Verma, A. R. & Krishna, P., Polymorphism and Polytypism in Crystals. John Wiley, New York, 1966. 5. M. Bhatnagar, B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for Power Devices,” IEEE Transaction on Electron Devices, 40, 645 (1993). 6. N. F. Shin, J. Y. Chen, T. S. Jen, J. W. Hong, and C. Y. Chang, “Hydrogenated Amorphous silicon carbide double graded-gap p-i-n thin film light-emitting diodes” IEEE Electron Devices Letters, vol. 14, [9] 453, (1993). 7. K. Tanaka, Report for Research of High Purity Silicon Carbide. National Institute for Research in Inorganic Materials, p.4. (1967) 8. Okabe, Y., Hojo J. & Kato A., “Formation of the fine silicon carbide powders by a vapor phase method,” J. Less-Common Met., 68, 29 (1979). 9. Okabe, Y., Hojo J. & Kato A., “Formation of silicon carbide powders by the vapor phase reaction of the SiH4-CH4-H2 system,” J. Chem. Soc. Japan, 188, (1980). 10. M. Sadakata, H. Baba, M. Sato, T. Sakai, “Vapor-Phase Synthesis of ultrafine particles of SiC from a premixed SiH4-C2H2 gas,” International Chemical Engineering, 31, 468 (1991). 11. S. Yajima, Y. Hasegawa, J. Hayashi, M. Iimura, “Synthesis of continuous silicon carbide fiber with high tensile strength and high Young’s modulus,” J. Mater. Sci., 13, 2569 (1978). 12. S. Yajima, “Special Heat Resisting Materials from Organometallic Polymers,” Ceram. Bull., 62, 893 (1983). 13. J. M. Zeigler and F. W. Gordon Fearon, (editors), Silicon-Based Polymer Science, published by American Chemistry Society, Washington, DC (1990). 14. H. R. Kricheldorf (editor), Silicon in Polymer Synthesis, p.243, springer, Berlin (1996). 15. S. Yajima, T. Shishido, and K. Okamura, “SiC Bodies Sintered with Three Dimensional Cross-Linked Polycarbosilane,” Ceram. Bull., 56 [12] 1060 (1977). 16. S. Yajima, T. Shishido, and H. Kayano, “Heat-resistant Fe-Cr alloy with polycarbosilane as binder,” Nature, 264, 237 (1976). 17. Y. Nakamura and S. Yajima, “Silicon Carbide Igniter Produced with Polycarbosilane,” Ceram. Bull., 61, 572 (1982). 18. S. Yajima, T. Shishido, H. Kayano, K. Okamura, M. Omori, and J. Hayashi, “SiC sintered bodies with three dimensional polycarbosilane as binder,” Nature, 264, 238 (1976). 19. D. J. Pysher, K. C. Goretta, R. S. Hodder, and R. E. Tressler, “Strengths of Ceramic Fibers at Elevated Temperatures,” J. Am. Ceram. Soc., 72 [2] 284 (1989). 20 S. Yajima, K. Okamura, J. Hayashi, M. Omori, “Synthesis of continuous SiC fiber with high tensile strength,” J. Am. Ceram. Soc., vol.59, 324 (1976). 21. T. Mah, N. L. Hecht, D. E. McCullum, J. R. Hoenigman, H. M. Kim, A. P. Katz, H. A. Lipsitt, “Thermal Stability of SiC fibers (Nicalon),” J. Mater. Sci., 19, 1191 (1984). 22. G. Simon and A. R. Bunsell, “Mechanical and Structural Characterization of the Nicalon Silicon Carbide Fiber,” J. Mater. Sci., 19, 3649 (1984). 23. Y. Nakamura and S. Yajima, “Silicon Carbide Igniter Produced with Polycarbosilane,” Ceram. Bull., 61 [5] 572 (1982). 24. S. Yajima T. Iwai, T. Yamamura, K. Okamura, and Y. Hasegawa, “Synthesis of a polytitanocarbosilane and its conversion into inorganic compounds,” J. Mater. Sci., 16, 1349 (1981). 25. S. Yajima, T. Shishido, H. Kayano, K. Okamura, M. Omori, and J. Hayashi, “SiC sintered bodies with three dimensional polycarbosilane as binder,” Nature, 264, 238 (1976). 26. F. Babonneau, G. D. Soraru, “Synthesis and Characterization of Si-Zr-C-O ceramics from polymer precusors,” J. European Ceramic Society, 8, 29 (1991). 27. T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura and T. Nagasawa, “High-strength alkali-resistant sintered fibre stable to 2200oC,” Nature, 391, 773 (1998). 28. T. Yamamura, T. Ishikawa, T., Shibuya, M. Hisayuki, T. and Okamura, “Development of a new continuous Si-Ti-C-O fiber using an organometallic polymer precusor,” J. Mater. Sci., 23, 2589 (1988). 29. T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, “Production mechanism of polyzirconocarbosilane using zirconium(IV) acetylacetonate and its conversion of the polymer into inorganic materials,” J. Mater. Sci., 33, 161 (1998). 30. F. Babonneau, G. D. Soraru, K. J. Thorne, J. D. Mackenzie, “Chemical characterization of Si-Al-C-O precusor and its pyrolysis,” J. Am. Ceram. Soc., 74, 1725 (1991). 31. G. E. LeGrow, T. F. Lim, J. Lipowitz, and R. S. Reaoch, “Ceramics from Hydridopolysilazane,” Am. Ceram. Soc. Bull., 66, 363-67 (1987). 32. J. Lipowitz, “Polymer-Derived Ceramic Fibers,” Am. Ceram. Bull., 70, 1888 (1991) 33. J. Koresh and A. Soffer, “Study of Molecular Sieve Carbon,” J. C. S. Faraday I, 76, 2457 (1980). 34. J. E. Koresh and A. Soffer, “Molecular Sieve Carbon Permselective Membrane,” Separation Science and Technology, 18 [8] 723 (1983). 35. J. E. Koresh and A. Soffer, “The Carbon Molecular Sieve Membrane. General Properties and the Permeability of CH4/H2 Mixture,” Separation Science and Technology, 22 [2,3] 973 (1987). 36. T. G. Lamond, J. E. Metcalf III, P. L. Walker, Carbon, 3, 59 (1965). 37. P. L. Walker, L. G. Austin, and S. P. Nandi, Chem. Phys. Carbon, 2, 257 (1966). 38. J. Petersen and K. Haraya, “Asymmetric Capillary Molecular Sieve Carbon Membranes from Kapton,” 480, ICOM’96 Proceeding, Yokohama (1996). 39. H. Suda, S. Kazama, and K. Haraya, “Gas Separation with Carbon Molecular Sieve Membranes Prepared from Several Types of Polyimides,” 460, ICOM’96 Proceeding, Yokohama (1996). 40. J. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, “Simultaneous Improvement of Permeance and Permselectivity of 3,3’,4,4’-Biphenyltetracaboxylic Dianhydride-4,4’-Oxydianiline Polyimide Membrane by Carbonization,” Ind. Eng. Chem. Res., 34, 4364 (1995). 41. J. Petersen, M. Matsuda, K. Haraya, “Capillary Carbon Molecular Sieve Membrane Derived From Kapton for High Temperature Gas Separation,” J. Memb. Sci., 131, 85 (1997). 42. Y. Kusuki, H. Shimazaki, N. Tanihara, S. Nakanishi, T. Yoshinaga, “Gas Permeation Properties and Characterization of Asymmetric Carbon Membranes Prepared by Pyrolying Asymmetric Polyimide Hollow Fiber Membrane,” J. Memb. Sci., 134, 245 (1997). 43. J.-i. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, “Simultaneous improvement of permeance and permselectivity of 3,3’,4,4’-biphenyltetracarboxylic dianhydride-4,4’-oxydianiline polyimide membrane by carbonization,” Ind. Eng. Chem. Res., 34, 4364 (1995). 44. J.-i. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, and S. Morooka, “Separation of Ethane/Ethylene and Propane/Propylene Systems with a Carbonized BPDA-pp’ODA Polyimide Membrane,” Ind. Eng. Chem. Res., 35, 4176 (1996) 45. J.-i. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, “Effect of Oxidation on Gas Permeation of Carbon Molecular Sieving Membranes Based on BPDA-pp’ODA Polyimide,” Ind. Eng. Chem. Res., 36, 2134 (1997) 46 J.-i. Hayashi, H. Mitzuta, M. Yamamoto, K. Kusakabe, and S. Morooka, “Pore size control of carbonized BPDA-pp’ODA polyimide membrane by chemical vapor deposition,” J. Memb. Sci., 124, 243 (1997). 47. K. Kusakabe, M. Yamamoto, S. Morooka, “Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation,” J. Memb. Sci., 149, 59 (1998). 48. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties, Academic Press, p.27, 1986. 49. G. R. Gavalas, C. E. Megiris, and S. W. Nam, “Deposition of H2-Permselectivity SiO2 Films,” Chemical Engineering Science, Vol. 44 [9] 1829 (1989). 50. S. W. Nam and G. R. Gavalas, “Stability of H2-Permselective SiO2 Films Formed by CVD”, AIChE Symp. Ser., 268, 68 (1989). 51. M. Tsapatsis, S. Kim, S. W. Nam, and G. Gavalas, “Synthesis of Hydrogen Perselective SiO2, TiO2, Al2O3, and B2O3 Membranes from the Chloride Precusors,” Ind. Eng. Chem. Res., 30, 2152 (1991) 52. C. E. Megris and J. H. E. Glezer, “Synthesis of H2-Permselective Membranes by Modified Chemical Vapor Deposition. Microstructure and Permselectivity of SiO2/C/Vycor Membranes,” Ind. Eng. Chem. Res., 31, 1293 (1992). 53. S. Yan, H. Maeda, K. Kusakabe, S. Morooka, and Y. Akiyama, “Hydrogen-Permselective SiO2 Membrane Formed in Pores of Alumina Support Tube by Chemical Vapor Deposition with Tetraethyl Orthosilicate,” Ind. Eng. Chem. Res., 33, 2096 (1994). 54. S. Morooka, S. Yan, K. Kusakabe, Y. Akiyama, “Formation of Hydrogen-permselective SiO2 Membrane in Macropores of -alumina support tube by thermal decomposition of TEOS,” J. Memb. Sci., 101, 89 (1995). 55. B. K. Sea, K. Kusakabe, and S. Morooka, “Pore Size Control and Gas Permeation Kinetics of Silica Membranes by Pyrolysis of Phenyl-Substituted Ethoxysilanes with Cross-Flow Through a Porous Support Wall,” J. Memb. Sci., 130, 41 (1997). 56. J. C. S. Wu, H. Sabol, G. W. Smith, D. L. Flowers, P. K. T. Liu, “Characterization of Hydrogen-Permselective Microporous Ceramic Membranes,” J. Memb. Sci., 96, 275 (1994). 57. S. Kitao and M. Asaeda, “Gas Separation Performance of Thin Porous Silica Membrane Prepared by Sol-Gel and CVD Treatment,” Key Engineering Materials, 61༖, 267 (1991). 58. N. K. Raman and C. J. Brinker, “Organic Template Approach to Molecular Sieving Silica Membranes,” J. Memb. Sci., 105, 273 (1995). 59. B. N. Nair, T. Yamaguchi, T. Okubo, H. Suematsu, K. Keizer, S. I. Nakao, “Sol-Gel Synthesis of Molecular Sieving Silica Membranes,” J. Memb. Sci., 135, 237 (1997). 60. R. M. de Vos and H. Verweij, “Improved Performance of Silica Membranes for Gas Separation,” J. Memb. Sci., 143, 37 (1998). 61. Y. Yan, M. E. Davis, G. R. Gavalas, “Preparation of Highly Selective Zeolite ZSM-5 Membranes by a Post-Synthetic Coking Treatments,” J. Memb. Sci., 123, 95 (1997). 62. K. Aoki, K. Kusakabe, S. Morooka, “Gas Permeation Properties of A-type Zeolite Membrane Formed on Porous Substrate by Hydrothermal Synthesis,” J. Memb. Sci., 141, 197 (1998). 63. Z. A. E. P. Vroon, K. Keizer, A. J. Burggraaf, H. Verweij, “Preparation and Characterization of Thin Zeolite MFI Membranes on Porous Supports,” J. Memb. Sci., 144, 65 (1998). 64. M.-D. Jia, B. Chen, R. D. Noble, J. L. Falconer, “Ceramic-Zeolite composite membranes and their application for separation of vapor/ gas mixtures,” J. Memb. Sci., 90, 1 (1994). 65. M. Niwa, K. Yamazaki, Y. Murakami, “Fine Control of the pore opening size of zeolite ZSM-5 by Chemical Vapor Deposition of Silicon Methoxide,” J. Phys. Chem., 90, 6233 (1986). 66. E. Piera, A. Giroir-Fendler, J. A. Dalmon, H. Moueddeb, J. Coronas, M. Menendez, J. Santamaria, “Separation of Alcohols and Alcohols/O2 Mixtures Using Zeolite MFI Membranes,” J. Memb. Sci., 142, 97 (1998). 67. A. J. Burggraaf, Z. A. E. P. Vroon, K. Keizer, and H. Verweij, “Permeation of Single Gases in Thin Zeolite MFI Membranes,” J. Memb. Sci., 144, 77 (1998). 68. K. Kusakabe, S. Yoneshige, A. Murata, S. Morooka, “Morphology and gas permeance of ZSM-5-type zeolite membrane formed on a porous -alumina support tube,” J. Memb. Sci., 116, 19 (1996). 69. Y. Yan, M. E. Davis, G. R. Gavalas, “Preparation of Zeolite ZSM-5 Membranes by In-situ Crystallization on Porous -Al2O3,” Ind. Eng. Chem. Res., 34, 1652 (1995). 70. E. J. Grosgogeat, J. R. Fried, R. G. Jenkins, and S. T. Hwang, “A Method for the Determination of the Pore Size Distribution of Molecular Sieve Materials and its Application to the Characteriztion of Partially Pyrolyzed Polysilastyrene/Porous Glass Composite Membranes,” J. Memb. Sci., 57, 237 (1991). 71. A. B. Shelekhin, E. J. Grosgogeat, and S. T. Huang, “Gas Separation Properties of a New Polymer/Inorganic Composite Membrane,” J. Memb. Sci., 66, 129 (1991). 72. K. Kusakabe, Z. Li, H. Maeda, S. Morooka, “Preparation of Supported Composite Membrane by Pyrolysis of Polycarbosilane for Gas Separation at High Temperature,” J. Memb. Sci., 103, 175 (1995). 73. Z. Li, K. Kusakabe, S. Morooka, “Preparation of thermostable Amorphous Si-C-O Membrane and Its Application to Gas Separation at Elevated Temperature,” J. Memb. Sci., 118, 159 (1996). 74. Z. Li, K. Kusakabe, S. Morooka, “Pore Structure and Permeance of Amorphous Si-C-O Membranes with High Durability at Elevated Temperature,” Sep. Sci. and Technol., 32 [7] 1233 (1997). 75. S. V. Sotirchos, V. N. Burganos, “Transport of gases in porous membranes,” MRS Bull., March 41 (1999). 76. R. M. Barrer, “Porous crystal membrane,” J. Chem. Soc. Fara. Trans., 86, [7] 1123 (1996). 77. R. C. Hurlbert, J. O. Konecny, “Diffusion of hydrogen through palladium,” J. Chem. Phys., 34, 655 (1961). 78. N. Itoh, “A membrane reactor using Palladium,” AIChE. J. 33(9) 1576 (1987). 79. D. J. Edlund, W. A. Pledger, “Thermolysis of hydrogen sulfide in a metal-membrane reactor,” J. Memb. Sci., 77, 264 (1993). 80. S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda and E. Kikuchi, “Separation of Hydrogen Through Palladium Thin Film Supported on a Porous Glass Tube,” J. Memb. Sci., 56, 303 (1991). 81. S. Uemiya, T. Matsuda, and E. Kikuchi, “Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics,” J. Memb. Sci., 56, 315(1991). 82. N. Itoh, R. Govind, “Development of a novel oxdiative palladium membrane reactor,” AIChE. Symp. Ser., 268, 10 (1989). 83. J. Schmitz, L. Lucke, F. Herzog and D. Glaubitz, “Permeation membranes for the production of hydrogen at high temperature,” in T. N. Vezirogluand A. N. Protsenko (Eds.), Hydrogen Energy Progress VII. Vol. 2, Int. Assoc. Hydrogen Energy, Pergamon, Oxford, p.81, 1988. 84. Z. Y. Li, H. Masda, K. Kusakabe, S. Morooka, H. Anzai, S. Akiyama, “Preparation of palladium-silveraloy membranes for hydrogen separation by spray pyrolysis method,” J. Memb. Sci. 78, 247 (1993). 85. S. Yan, H. Maeda, K. Kusakabe, and S. Morooka, “Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation,” Ind. Eng. Chem. Res., 33, 616 (1994). 86. H. P. Hsieh, Inorganic Membranes for Separation and Reaction, Elsevier, Amsterdam (1996). 87. G. R. Gallaher, P. K. T. Liu, “Characterization of ceramic membranes I. Thermal and hydrothermal stabilities of commerical 40A membranes,” J. Memb. Sci. 92, 29 (1994). 88. Himmelblau, D. M. and Bischoff, K. B., Process Analysis and Simulation, p.67, Wiley, New York, (1968). 89. Y. S. Lin, “A theoretical analysis on pore size change of porous ceramic membranes after modification,” J. Memb. Sci., 79, 55 (1993). 90. W. Strieder and S. Prager, “Knudsen flow through a porous medium,” The Physics of Fluids, 11, 2544 (1968). 91. H. L. Weissberg, “Effective diffusion coefficient in porous media,” J. Appl. Phys., 34, 2636 (1963). 92. F. G. Ho, and W. Strieder, “Asymptotic expansion of the porous medium, effective diffusion coefficient in the Knudsen number,” J. Chem. Phys., 70, 5635 (1979). 93. Y. S. Lin, and A. J. Burggraaf, “Experimental studies on pore size change of porous ceramic membranes after modification,” J. Memb. Sci., 79, 65 (1993). 94. F. A. L. Dullien, Porous Media Fluid Transport and Pore Structure, p.201, Academic Press, New York (1979). 95. S. Kitao, and M. Asaeda, “Gas separation performance of thin porous silica membrane prepared by sol-gel and CVD methods,” Key Engineering Materials, 61༖, 267 (1991). 96. T. Sorita, S. Shiga, K. Ikuta, Y. Egashira, and H. Komiyama, “The formation mechanism and step coverage quality of TEOS-SiO2 films studied by the micro/macrocavity method,” J. Electrochem. Soc., 140, 2952 (1993b). 97. L. S. Hong, Y. Shimogaki, Y. Egashira, and H. Komiyama, “Study of the reaction of Si2H6 in the presence of C2H2 in synthesis of SiC films by LPCVD using a macro/microcavity method,” J. Electrochem. Soc., 139, 3652 (1992). 98. R. J. Buss, P. Ho., W. G. Breiland, and M. E. Coltrin, “Reactive Sticking Coefficients for Silane and Disilane on Polycrystalline Silicon,” J. App. Phys., 63 [8] 2808 (1988). 99. P. K. Lin, and D. S. Tsai, “Preparation and analysis of a silicon carbide composite membrane,” J. Am. Ceram. Soc., 80 [2] 365 (1997). 100. R. M. German, Liquid phase sintering, Plenum Press, New York (1985).
|