(3.236.175.108) 您好!臺灣時間:2021/02/27 06:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林志新
研究生(外文):Chih-Hsin Lin
論文名稱:具有完美重建之三維濾波器、數位全通濾波器及複數係數數位濾波器設計
論文名稱(外文):The Design of 3-D Perfect Reconstruction Filter Banks, Digital All-Pass Filters, and Complex FIR Digital Filters
指導教授:邱炳樟邱炳樟引用關係
指導教授(外文):Bin-Chang Chieu
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:70
中文關鍵詞:三維完美重建濾波器組數位全通濾波器複數係數數位濾波器
外文關鍵詞:3-D Perfect Reconstruction Filter BanksDigital All-Pass FiltersComplex FIR Digital Filters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對三維完美重建濾波器組、數位全通濾波器及複數係數數位濾波器在最小極大值準則下的設計提出幾個新而有效的設計方法。本篇論文提出的方法是根據Karmarkar演算法的affine scaling及dual affine scaling變型發展而得。
對於三維數位濾波器組,本論文提出兩種新的設計方法可供設計具有線性相角響應之FIR分析濾波器及合成濾波器的完美重建濾波器組。所設計的分析濾波器及合成濾波器均在完美重建的限制下依最小極大值誤差準則設計而得。
在數位全通濾波器方面,本文提藉著同時減少最大的振幅及相位誤差或同時減少最大的振幅及群延遲誤差的設計技術,而濾波器的係數就可以由Karmarkar的affine scaling變型演算法獲得。
而在設計複數數位濾波器方面,原始的複數近似值首先被分解成兩個實數部分,然後Karmarkar的affine scaling變型演算法就可以依最小極大值大準大則來減少實數及虛數部分的誤差以得到複數脈波響應的係數。
由本論文各章中的計算機模擬範例結果顯示,本文針對各設計問題所提出的設計方法,其有效性均得以確認。

This thesis presents several novel and efficient techniques for designing three-dimensional (3-D) perfect reconstruction (PR) filter banks, FIR digital all-pass filters, and complex FIR digital filters in minimax sense. The proposed approaches are developed based on the affine and dual affine scaling variants of Karmarkar's algorithm.
As for the 3-D perfect reconstruction digital filter banks, two novel techniques are proposed for designing PR filter banks with FIR analysis and synthesis filters having linear phase responses. The designed analysis and synthesis filters are in the minimax sense subject to the perfect reconstruction constraints.
With regard to the design of FIR digital all-pass filters, we propose design techniques via minimizing the peak magnitude error and peak phase error simultaneously or minimizing the peak magnitude error and peak group delay error simultaneously. The filter coefficients are obtained by an affine scaling variant of Karmarkar's algorithm.
For designing complex FIR digital filters, the original complex approximation is divided into two real ones first. Then the affine scaling variant of Karmarkar's algorithm is also applied to minimize the real part and imaginary part error in minimax sense to get the complex impulse response coefficients.
From the simulation examples demonstrated in each chapter of this thesis, the effectiveness of the proposed design techniques for each considered problem can be confirmed.

中文摘要…………………………………………………………………………….I
ABSTRACT.….……………………………………………………………………II
誌謝………………………………………………………………………………..III
圖表索引…………………………………………………………………………..VI
CHAPTER 1 INTRODUCTION…………………………………………………...1
CHAPTER 2 TWO CHANNEL FCOFB WITH MINIMAX AND
PERFECT RECONSTRUCTION DESIGN…………………………3
2.1 Introduction………………………………………………………3
2.2 Problem Formulation………………………………………….….4
2.2.1 The Perfect Reconstruction FIR Linear Phase
Filter Banks…………………………………………………5
2.2.2 Desired Response for the Analysis Filters…………………7
2.2.3 Formulation of the Design Problem……………………….9
2.3 The Proposed Approach………………………………………...11
2.3.1 Updating for Minimax Optimization Proble...……….13
2.3.2 Updating for PR by first-order approximation
schem………………………………………………………14
2.4 Design Example………………………………………………...16
2.5 Conclusion………………………………………………………17
CHAPTER 3 MINIMAX DESIGN OF FIR DIGITAL ALL-PASS FILTERS………25
3.1 Introduction………………………………………………………..25
3.2 FIR Digital All-Pass Filter Design………………………………...26
3.3 Algorithm to Design FIR Digital All-pass Filters…………………29
3.4 Computer Simulation Examples…………………………………...33
3.5 Conclusion…………………………………………………………34
CHAPTER 4 MINIMAX DESIGN OF COMPLEX FIR DIGITAL FILTERS
WITH ARBITRARY COMPLEX FREQUENCY RESPONSE……...42
4.1 Introduction………………………………………………………..42
4.2 Problem Formulation for Complex FIR Filter Design…………….43
4.3 Algorithm to Design Complex FIR Digital Filters………………...47
4.4 Design of Complex FIR All-Pass Filters…………………………..48
4.5 Computer simulation examples and comparisons…………………49
4.6 Conclusion..………………………………………………………..51
CHAPTER 5 CONCLUSION AND POSSIBLE FUTURE RESEAECH WOEKS...59
REFERENCES……………………………………………………………………….60
Appendix A SOME MATRICE' CONTENT AND MATHEMATIC
DERIVATION IN CHAPTER 2………………………………………..64
Appendix B "Two Channel FCOFB with Minimax And
Perfect Reconstruction Design" revised letter…………………………66
Appendix C "Minimax Design of FIR Digital All-Pass Filters" revised letter………67
Appendix D "Minimax Design of Complex FIR Digital Filters with Arbitrary
Complex Frequency Responses" revised letter..………………………68
作者簡介……………………………………………………………………………..69
授權書………………………………………………………………………………..70

[1] J. W. Woods and S.D. O'Neil, "Subband coding of images," IEEE Trans. Acoust., Speech, Signal Process., vol. 34, no. 5, pp. 1278-1288, Oct. 1986.
[2] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs, NJ: Prentice Hall, 1993.
[3] T. Q. Nguyen and P. P. Vaidyanathan, "Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters," IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 676-690, May 1989.
[4] B. R. Horng, and A. N. Willson, Jr. "Lagrange multiplier approaches to the design of two-channel perfect-reconstruction linear-phase FIR filter banks," IEEE trans. Signal Processing, vol. 40, pp.364-374, Feb. 1992.
[5] H. Xu, W.-S. Lu, and A. Antoniou, "Design of Perfect Reconstruction QMF banks by a null-space projection method," in Proc. IEEE ICASSP 95, pp. 965-968, 1995.
[6] H. Xu, W.-S. Lu, and A. Antoniou, "An Improved Method for the Design of FIR Quadrature Mirror-Image Filter Banks," IEEE trans. Signal Processing, vol. 46, pp. 1275-1281, May. 1998.
[7] J. Kovacevic and M. Veterli, "FCO sampling of digital video using perfect reconstruction filter banks," IEEE Trans. Image Process., vol. 2, no. 1, pp. 118-122, Jan. 1993.
[8] D. B. H. Tay and N. G. Kingsbury, "Design of nonseparable 3-D filter banks/wavelet bases using transformations of variables," IEE Proc.-Vis. Image Signal Process., vol. 143, no. 1, pp. 51-61, Feb, 1996.
[9] I. Adler, M. G. C. Resende, G. Veiga, and N. Karmarkar, "An implementation of Karmarkar's algorithm for linear programming," Math. Programming., vol. 44, no. 3, pp. 297-335, Nov. 1989.
[10] G. Strang, Linear Algebra and Its Applications, San Diego: Harcourt Brace
Jovanovich Inc., 1988.
[11] P. A. Regalia, S. K. Mitra, and P. P. Vaidyanathan, "The digital all-pass filter: A versatile signal processing building block," Proc. IEEE, vol. 76, no. 1, pp. 19-37, Jan. 1988.
[12] P. P. Vaidyanathan, S. K. Mitra, and Y. Neuvo, "A new approach to the realization of low-sensitivity IIR digital filters," IEEE trans. Acoust., Speech, Signal Processing, vol. ASSP-34, no. 2, pp. 350-361, Apr. 1986.
[13] T. Saramaki, "On the design of digital filters as a sum of two all-pass filters," IEEE trans. Circuits, Syst., vol. CAS-32, no. 11, pp. 1191-1193, Nov. 1985.
[14] R. Ansari, "Multi-level IIR digital filters," IEEE trans. Circuits, Syst., vol. CAS-33, no. 3, pp. 337-341, Mar. 1986.
[15] T. A. Ramstad, "IIR filterbank for subband coding of images," in Proc. ISCAS'88, pp. 827-830.
[16] A. G. Constantinides and R. A. Valenzuela, "A class of efficient interpolators and decimators with applications in transmultiplexing," in Proc. ISCAS'82, pp. 260-263, May 1982.
[17] A. G. Deczky, "Synthesis of recursive digital filters using the minimum p-error criterion," IEEE trans. Audio Electroacoust., vol. AU-20, pp.257-263, 1972.
[18] A. G. Deczky, "Equiripple and minimax (Chebyshev) approximations for recursive digital filters," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-22, pp. 98-111, 1974.
[19] K. Steiglitz, "Design of FIR digital phase networks," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-29, pp. 171-176, 1981.
[20] L. R. Rabiner, N. Y. Graham, and H. D. Helms, "Linear programming design of IIR digital filters with arbitrary magnitude function," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-22, pp.117-123, 1974.
[21] S. C. Pei and J. J. Shyu, "Eigen-approach for designing FIR filters and all-pass phase equalizers with prescribed magnitude and phase response," IEEE trans. Circuits Syst. II, vol. 39, pp.137-146, Mar. 1992.
[22] T. Q. Nguyen, T. I. Laakso, and R. D. Koilpillai, "Eigenfilter approach for the Design of allpass filters approximating a given phase response," IEEE trans. Signal Processing, vol. 42, pp. 2257-2263, Set. 1994.
[23] C.-K. Chen and J.-H. Lee, "Design of digital all-pass filters using a weighted least squares approach," IEEE trans. Circuits Syst. II, vol. 41, pp. 346-351, May, 1994.
[24] S. A. Ruzinsky and E. T. Olsen, " and norm minimization via a variant of Karmarkar's algorithm," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-37, pp. 245-253, Jan. 1989.
[25] X. Chen and T. W. Parks, "Design of FIR filters in the complex domain," IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-35, pp. 144-153, Feb. 1987.
[26] R. J. Vanderbei, M. S. Meketon, and B.A. Freedman, "A modification of Karmarkar's Linear programming algorithm," Algorithmica, 1, pp.395-407, 1989.
[27] A.S. Alkhairy, K.G. Christian, and J.S. Lim, Design and characterization of optimal FIR filters with arbitrary phase. IEEE Trans. Signal Process., vol. 41, pp. 559-572, Feb. 1993.
[28] K. Preuss, On the design of FIR filters by complex Chebyshev approximation, IEEE trans. Acoust. Speech Signal Process., vol. 37, pp. 702-712, May 1989.
[29] M. Schulist, Improvements of a complex FIR filter design algorithm, IEEE trans. Signal Process, vol. 20, pp. 81-90, May 1990.
[30] D. Burnside and T.W. Parks, Accelerated design of FIR filters in the complex domain, in Proc. IEEE Internat. Conf. Acoust. Speech Signal Process., Minneapolis, USA, pp. III 81-84, Apr. 1993.
[31] K. Glashoff and K. Roleff, A new method for Chebyshev approximation of complex valued functions, Math. Comp., pp. 233-239, vol. 36, 1981.
[32] P.P. Tang, A fast algorithm for linear complex Chebyshev approximations, Math. Comp., vol. 52, pp. 721-739, Oct. 1988.
[33] S. Ellacott and J. Williams, Linear Chebyshev approximation in the complex plane using Lawson's algorithm, Math. Comp., vol. 30, pp. 35-44, Jan. 1976.
[34] S.C. Pei, and J.J. Shyu, Design of complex FIR filters with arbitrary complex frequency responses by two real Chebyshev approximations, IEEE trans. Circuits Syst. I, vol. 44, pp. 170-174, Feb.1997.
[35] I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga, An Implementation of Karmarkar's algorithm for linear programming, Math. Programming, vol. 44, pp. 297-335, 1989.
[36] S.C. Fang and S. Puthenpura, Linear Optimization and Extensions: Theory and Algorithms, Prentice-Hall, Englewood Cliffs, NJ, USA, 1993.
[37] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing: Prentice-Hall, Englewood Cliffs, NJ, USA, 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔