跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 04:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宗柏
研究生(外文):Tsung-Po Chen
論文名稱:三相波寬調變驅動系統諧波消除技術之研究
論文名稱(外文):A Study on the Harmonic Elimination Technique of Three-Phase Pulse Width Modulation Drive Systems
指導教授:劉昌煥劉昌煥引用關係
指導教授(外文):Chang-Huan Liu
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:154
中文關鍵詞:波寬調變諧波消除空間向量調變總諧波失真變頻器
外文關鍵詞:PWMharmonic eliminationspace vector modulationtotal harmonic distortioninverter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:573
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在於探討三相調變器中波寬調變器的諧波消除技術與即時總諧波最佳化等方面的問題。對於傳統諧波消除規劃技術方面,經由加入三次諧波的規劃以改善其總諧波失真的研究,證實加入三次諧波的規劃方式在高功率、低切換次數的應用可以得到減少總諧波失真的功效。
在即時計算的調變器方面,本論文提出一種同時具有切換損失最小化、節省計算時間而且實現容易的即時諧波消除空間向量調變技術(harmonic elimination universal space vector modulation - HEUSVM)。經由空向量的適當配置,使得二相調變(two-phase modulation)的鉗位角度對準線電流的峰值範圍,以避免對峰值電流作切換而獲致切換損失最小化的效果。前述HEUSVM的實現乃是應用對稱取樣方式,本文也證實除了極低的切換頻率以外,對稱取樣無論在基本波誤差或者是總諧波失真等特性,與傳統非對稱取樣相似。本論文也進一步結合了前述的HEUSVM與對稱取樣T0=T7 空間向量調變技術,藉著實際調變指標與臨界調變指標相對關係來選用適當的調變技術,而成為一種即時全調變範圍總諧波失真最佳化策略。
有感於開關元件與微處理器的進步日新月異,中小型變頻器的調變技術之改善已不如以往迫切,於是進一步對變頻器之協同運轉作研究,於本論文中對於對稱取樣T0=T7 空間向量調變的並聯運轉作一探討,並且可以獲得良好的諧波失真改善與容量擴增效果。
前述的調變技術之模擬與實驗結果也將於文中提出以供理論之驗證
The main themes of this dissertation are the harmonic elimination and the minimization of total harmonic distortion for three-phase inverter pulse width modulators. First, the injection of third-order harmonics into the programmed "harmonic elimination pulse width modulator" (HEPWM) is presented. A real-time harmonic elimination space vector modulation technique, the "harmonic elimination universal space vector modulation" (HEUSVM) is then proposed. The proposed harmonic elimination space vector modulation technique not only minimizes the switching losses but also reduces the calculation time for the digital gate pulses of the voltage vectors. The real-time optimal space vector modulation strategy, consisted of the HEUSVM and symmetrical sampled T0=T7 SVM, proves minimal total harmonic distortion characteristics in the whole linear modulation range. Finally the parallel operation of the dual space vector modulators is investigated. The simulation and experimental results of the proposed modulation techniques are proposed and confirm the results based on theoretical analysis.
封面
中文摘要
ABSTRACT
致謝
目錄
符號索引
圖表索引
第一章 導論
第二章 波寬調變理論之回顧
2.1 電壓源波寬調變器之分類與概述
2.2 規畫型波寬調變方式之分類與概述
2.3 弦波波寬調變之概述
2.4 空間向量調變之分類與概述
第三章 規畫型諧波消除波寬調變總諧波失真之研究
3.1 前言
3.2 加入三次諧波的 HEPWN 變頻器
3.3 次佳化 HEPWM 實驗結果
3.4 三次諧波加入之諧波綃除驅動器的檢討與結論
第四章 通用空間向量調變諧波綃除技術之研究
4.1 前言
4.2 諧波消除通用空間向量調變技術之發展
4.3 通用空間向量調變諧波綃除技術之實驗結果
4.4 通用空間向量調變諧波消除技術之結論
第五章 對稱取樣總諧波失真最佳化空間向量技術之發展
5.1 前言
5.2 對稱取樣總諧波失真即時最佳化空間向量技術之概述
5.3 對稱式To=T空間向量調變之發展
5.4 對稱取樣空間向量調變過調變性能
5.5 對稱取樣 To=TSVM 與HEUSVM 之整合
5.6 實驗與模擬結果
5.7 結論
第六章 對稱式空間向量線電壓諧波分析法
6.1 前言
6.2 傳統富立葉級數對波寬調變諧波分析之回顧
6.3 對稱式空間向量線電壓之觀察與分析
6.4 對稱式空間向量線電壓諧波分析法之發展
6.5 對稱式空間向量線電壓諧波分析法結論與建議
第七章 空間向量調變驅動器並聯工作之可行性評估
7.1 前言
7.2 對稱取樣 To=TSVM驅動器並聯技術之發展
7.3 對稱取樣 To=T7SVM 驅動器並聯技術之模擬
7.4 結論
第八章 模擬與實系統之發展
8.1 硬體系統
8.2 模擬軟體之發展
第九章 結論與建議
9.1 結論
9.2 建議與後續研究之方向
參考文獻
作者簡介
[1]B. K. Bose, Power Electronics and AC Drives, Prentice-Hall, NJ, USA, 1986.
[2]J. Holtz, “Pulsewidth Modulation - A Survey,” IEEE Trans. on In-dustrial Electronics, vol. 39, no. 5, pp. 410-420, Dec. 1992.
[3]M. H. Rashid, Power Electronics Circuits, Devices, and Applications, second edition, Prentice Hall, NJ, USA, 1993.
[4]G. K. John, F. S. Martin, and C. V. George, Principles of Power Elec-tronics, Addison Wesley, New York, 1991.
[5]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics Converters Application and Design, 2nd edition, John Wiley & Sons, New York, 1989.
[6]G. Pfaff, A. Weschta, and A. Wick, “Design and Experimental Results of a Brushless AC Servo Drive,” IEEE IAS Conference Record, pp. 692-697, San Francisco, CA, Oct. 1982.
[7]H. W. van der Broeck, H. C. Skudelny, and G. V. Stanke “Analysis and Realization of a Pulsewidth Based on Voltage Space Vectors,” IEEE Trans. on Industry Applications, vol. 24, no. 1, pp. 142-150, Jan./Feb. 1988.
[8]S. R. Bowes and R. R. Clements “Computer Aided Design of PWM Inverter Systems,” IEE Proceedings, Pt.B, vol. 129, no. 1, pp. 1-17, Jan. 1982.
[9]S. R. Bowes and A. Midoun, “Suboptimal Switching Strategies for Microprocessor-Controlled PWM Inverter Drives,” IEE Proceedings, Pt. B, vol. 132, no.3, pp. 133-148, May 1985.
[10]G. S. Buja and G. B. Indri, “Optimal Pulsewidth Modulation for Feeding AC Motors,” IEEE Trans. on Industry Applications, vol. IA-13, no. 1, pp. 38-44, Jan./Feb. 1977.
[11]J. Holtz and B. Beyer, “Optimal Pulsewidth Modulation for AC Ser-vos and Low-Cost Industrial Drives,” IEEE IAS Conference Record, pp. 1010-1017, 1992.
[12]J. A. Houldsworth and D. G. Grant “The Use of Harmonic Distortion to Increase Voltage of a Three Phase PWM Inverter,” IEEE Trans. on Industry Applications, vol. 20, no. 5, pp. 1224-1228, 1984.
[13]A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Carrier-Based PWM-VSI Overmodulation Strategies: Analysis, Comparison, and Design,” IEEE Trans. on Power Electronics, vol. 13, no. 4, pp. 674-689, July 1998.
[14]F. Blaabjerg, L. Chen, and J. K. Pedersen , “Harmonic Analysis of Two PWM Waveforms in Asynchronous Modulation,” Proc. of IEEE Int. Sympo. on Industrial Electronics, Xian, China, pp. 701-705, May 1992.
[15]M. Mirkazemi-Moud, B. W. Williams, and Tim C. Green, “A Novel Simulation Technique for the Analysis of Digital Asynchronous Pulse Width Modulation,” IEEE Trans. on Industry Applications, vol. 30, no. 5, pp. 1284-1289, Sep./Oct. 1994.
[16]G. N. Acharya “Microprocessor-Based PWM Inverter Using Regular Sampling Techniques” IEEE Trans. on Industry Applications, pp.286-292, 1986.
[17]S. R. Bowes “New Sinusoidal Pulsewidth-Modulated Inverter, ” Proc. IEE, vol. 122, no. 11, pp. 1279-1285, 1975.
[18]S. R. Bowes “Advanced Regular-Sampled PWM Control Techniques for Drives and Static Power Converter,” IEEE Trans. on Industrial Electronics., vol. 42, no. 4, pp. 367-373, 1995.
[19]D. G. Holmes, “The Significance of Zero Space Vector Placement for Carrier Based PWM Schemes,” IEEE Trans. on Industry Applications, vol. 32, no. 5, pp.1122-1129, Sep./Oct. 1996.
[20]D. W. Chung, J. S. Kim and S. K. Sul, “Unified Voltage Modulation Technique for Real-Time Three-Phase Power Conversion,” IEEE Trans. on Industry Applications, vol. 34, no. 2, pp. 374-380, Mar./Apr. 1998.
[21]Y. S. Lai and S. R. Bowes, “A New Suboptimal Pulse-Width Modula-tion Technique for Per-Phase Modulation and Space Vector Modula-tion,” IEEE Trans. on Energy Conversion, vol. 12, no. 4, pp. 310-316, Dec. 1997.
[22]T. G. Habetler, F. Profumo, M. Pastorelli and L. M. Tolbert, “Direct Torque Control of Induction Machines Using Space Vector Modula-tion,” IEEE Trans. on Industry Applications, vol. 28, no. 5, pp. 1045-1059, 1992.
[23]H. S. Patel and R.G. Hoft “Generalized Techniques of Harmonic Elimination, ” IEEE Trans. on Industry Applications, vol. IA-9, pp. 310-317, May/June 1973.
[24]H. S. Patel and R.G. Hoft “Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters. Part 2-Voltage Control Techniques,” IEEE Trans. on Industry Applications, vol. IA-10, no. 5, pp. 666-673, Sep./Oct. 1974.
[25]P. N. Enjeti, P. D. Ziogas, and J. F. Lindsay, “Programmed PWM Techniques to Eliminate Harmonics: A Critical Evaluation,” IEEE IAS Conference Record, pp. 418-430, 1988. (also see IEEE Trans. on In-dustry Applications, vol. 26, pp. 302-316, 1990.)
[26]Optimization Toolbox User''s Guide, Prentice-Hall, NJ, USA, 1992.
[27]S. R. Bowes and P. R. Clark “Simple Microprocessor Implementation of New Regular-Sampled Harmonic-Elimination PWM Techniques, ” IEEE Trans. on Industry Applications, vol. 28, no. 1, pp. 89-95, Jan.-Feb., 1992.
[28]S. R. Bowes and P. R. Clark “Transputer Based Harmonic-Elimination PWM Control of Inverter Drives, ” IEEE Trans. on Industry Applica-tions, vol. 28, no. 1, pp. 72-80, Jan.-Feb., 1992.
[29]Y. S. Lai and S. R. Bowes, “A Novel Harmonic Elimination Pulse-Width Modulation Technique for Static Converter and Drives, ” Proc. APEC Part 1 (of 2) , pp. 108-115, Piscataway, NJ, USA, 1998.
[30]Y. S. Lai and S. R. Bowes, “A Universal Space Vector Modulation Strategy Based on Regular-Sampled Pulse-Width Modulation,” in Proc. IEEE Int. Conf. Ind. Electron., Taipei, Taiwan, pp.120-126, 1996.
[31]A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple Analytical and Graphical Methods for Carrier Based PWM-VSI Drives,” IEEE Trans. on Power Electronics, vol. 14, no. 1, pp. 49-61, Jan. 1999.
[32]T. P. Chen, Y. S. Lai, and C. H. Liu, “A New Harmonic Elimination Technique for Space Vector Modulation,” accepted by the Journal of Chinese Institute of Electrical Engineering, 1999.
[33]T. P. Chen Y. S. Lai and C. H. Liu, “A New Space Vector Modulation Technique for Inverter Control,” in IEEE PESC Record, pp. 777-782, Charleston, SC, USA, June 1999.
[34]J. T. Boys and P. G. Handley, “Harmonic Analysis of Space Vector Modulated PWM Waveforms,” IEE Proceedings, Pt. B, vol. 137, no. 4, July 1990.
[35]D. G. Holmes, “A General Analytical Method for Determining the Theoretical Harmonic Components of Carrier Based PWM Strate-gies, ” in IAS Conference Record, St. Louis, Missouri, USA, Oct. 1998.
[36]J. W. Nilson, Electric Circuits, 3rd edition, Addison-Wesley, New York, 1990.
[37]D. A. Deib, H. W. Hill, “The Advantages of Harmonic-Distortion Minimization Over Traditional Harmonic-Elimination Techniques,” in IEEE PESC Record, pp. 1048-1054, 1993.
[38]S. Fukuda and Y. Iwaji, “The Introduction of The Harmonic Distor-tion Determining Factor and Its Application to Evaluating Real Time PWM Inverters”, IEEE Trans. on Industry Applications, vol. 31, no. 1, Jan./Feb. 1995.
[39]S. Tadakuma, S. Tanaka, K. Miura, and W. Ofosu-Amaah, “Improved PWM Control for GTO Inverters with Pulse Number Modulation, ” IEEE Trans. on Industry Applications, vol. 32, no. 3, pp. 526-532, May/Jun., 1996.
[40]P. V. O’Neil, Advanced Engineering Mathematics, 4th edition, Wad-sworth Publishing, Belmont, California, 1995.
[41]J. A. Taufiq, B. Mellitt and C. J. Goodman, “Novel Algorithm for Generating Near Optimal PWM Waveform for AC Traction Drives, ” IEE Proceedings, Pt. B, vol. 133, no. 2, March 1986.
[42]S. R. Bowes “Novel Real-Time Harmonic Minimized PWM Control for Drives and Static Power Converters,” IEEE Trans. on Power Electronics, vol. 9, no. 3, pp. 256-262, 1994.
[43]S. R. Bowes and P. R. Clark “Regular-Sampled Harmonic-Elimination PWM Control of Inverter Drives, ” IEEE Trans. on Power Electron-ics, vol. 10, no. 5, pp. 521-531, Sep. 1995.
[44]A. Schonung and H. Stemmler “Static Frequency Changers with Sub-Harmonic Control in Conjunction with Reversible Variable Speed AC Drives,” Brown Boveri Rev., vol. 51, pp. 555-577, 1964.
[45]J. W. Kolar, H. Ertl, and C. Zach, “Minimizing the Current Harmonics RMS Value of Three-Phase PWM Converter Systems by Optimal and Suboptimal Transition Between Continuous and Discontinuous Modulation, ” in IEEE PESC Record, pp. 372-381, 1991.
[46]J. W. Kolar, H. Ertl, and C. Zach, “Influence of the Modulation Meth-od on the Conduction and Switching Losses of a PWM Converter System, ” IEEE Trans. on Industry Applications, vol. 27, no. 6, pp. 1063-1075, Nov./Dec., 1991.
[47]M. Depenbrock, “Pulse Width Control of a 3-phase Inverter with Non-Sinusoidal Phase Voltages, ” in IEEE ISPC Conference Record, pp. 399-403, 1977.
[48]S. R. Bowes and Y. S. Lai, “The Relationship Between Space Vector Modulation and Regular-Sampled Pulse-Width Modulation, ” IEEE Trans. on Industrial Electronics, vol. 44, no. 5, pp. 670-680, Oct. 1997.
[49]Y. Iwaji and S. Fukuda, “A Pulse Frequency Modulated PWM Inverter for Induction Motor Drives,” IEEE Trans. on Power Electronics., vol. 7, no. 2, pp. 404-410, 1992.
[50]S. Y. R. Hui, I. Opperman, and S. Sathiakumar, “Microprocessor-Based Random PWM Schemes for DC-AC Power Conversion,” IEEE Trans. on Power Electronics, vol. 12, no. 2, March 1997.
[51]A. M. Trzynadlowski, M. M. Bech, F. Blaabjerg and J. K. Pedersen, “An Integral Space-Vector PWM Technique for DSP-Controlled Volt-age-Source Inverters,” IEEE IAS Conference Recoed, St. Louis, Missouri, USA, Oct. 1998.
[52]A. M. Trzynadlowski, R. L. Kirlin, S. F. Legowski, “Space Vector PWM Technique with Minimum Switching Losses and a Variable Pul-se Rate,” IEEE Trans. on Industrial Electronics, vol. 44. no. 2, pp. 173-181, 1997.
[53] A. M. Trzynadlowski, S. Legowski, “Minimum-Loss Vector PWM Strategy for Three-Phase Inverter,” IEEE Trans. on Power Electron-ics, vol. 9. no. 1, pp. 26-34, 1994.
[54]F. Jenni and D. Wueest, “The Optimization Parameters of Space Vec-tor Modulation,” in Proc. European Power Electron. Conference, pp.376-381, 1993.
[55]A. Busse and J. Holtz, “Multiloop Control of a Unity Power Factor Fast Switching AC to DC Converter,” in IEEE PESC Record, pp. 171-179, Cambridge Massachusetts, June 1982.
[56] F. Blaabjerg, J. K. Pedersen and U. Jaeger, “Evaluation of Modern IGBT-Modules for Hard-Switched AC/DC/AC Converters,” in IEEE IAS Conference Record. Part 2 (of 3), Orlando, FL, USA, 1995
[57]J. K. Seok, J. S. Kim, and S. K. Sul, “Overmodulation Strategy for High-Performance Torque Control, ” IEEE Trans. on Power Elec-tronics, vol. 13, no. 4, pp. 786-792, July. 1998.
[58]T. P. Chen, C. H. Liu, Y. S. Lai, “A new Harmonic-Elimination Tech-nique for Inverter Control of High Power Drives,” Proc. The 17th Symposium on Elec. Power Eng., PP. 142-146, Taiwan, 1996.
[59]The Mathworks Inc. , MATLAB Version 4 User''s Guide, Prentice-Hall, NJ, USA, 1995.
[60]R. P. Nelson, Microsoft''s 80386/80486 Programming Guide, Mi-crosoft Press, Redmond, Washington, USA.
[61]B. B. Grey, The INTEL Microprocessor 8086/8088,80186, 80286, 80386, and 80486 Architecture, Programming, and Interfacing, 2nd edition, Maxwell Macmillan, New York, 1991.
[62]S. R. Bowes and Y. S. Lai, “Investigation into Optimizing High Switching Frequency Regular-Sampled PWM for Drives and Static Power Converters,” IEE, Proc. Electr. Power Appl., vol. 143, no.4, pp.281-293, Jul. 1996.
[63]Y. S. Lai and S. R. Bowes, “A Novel High Frequency Universal Space Vector Modulation Control Technique,” Proc. IEEE PEDS, part 1, pp. 501-507, Piscataway, NJ, USA 1997.
[64]A. M. Hava, R. J. Kerkman, and T. A. Lipo, “A High-Performance Generalized Discontinuous PWM Algorithm,” IEEE Trans. on Indus-try applications, vol. 34, no. 5, pp. 1059-1071, Sep./Oct. 1998.
[65]E. Kamen, “Introduction to Signals and Systems”, Macmillan pub-lishing, New York, 1987.
[66]S. Ogasawara, J. Takagaki, H. Akagi, and A. Nabae, “A Novel Control Scheme of a Parallel Current-Controlled PWM Inverter,” IEEE Trans. on Industry Applications, pp.1023-1030, 1992.
[67]F. Ueda, K. Matsui, M. Asao, and K. Tsuboi, “Parallel-Connections of Pulsewidth Modulated Inverters Using Current Sharing Reactors,” IEEE Trans. on Power Electronics, vol. 10. No. 6, pp. 673-697, 1995.
[68]Mathworks Inc. ,The Student Edition of SIMULINK User''s Guide, Prentice-Hall, NJ, USA, 1995
[69]H. Akagi, A. Nabae, “Control Strategy of Active Power Filters Using Multiple Voltage-Source PWM Converters, ” IEEE Trans. on Industry Applications, vol. IA-22, no. 3, pp.460-465, May/June, 1986.
[70]H. Fujita, A. Akagi, “An Approach to Harmonic Current-Free AC/DC Power Conversion for Large Industrial Loads: The Integration of a Series Active Filter with a Double-Series Diode Rectifier, ” IEEE Trans. on Industry Applications, vol. 33, no. 5, pp.1233-1240, Sep. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊