跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 03:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李建良
研究生(外文):Li chien liang
論文名稱:品質損失於穩健化容差設計之研究
論文名稱(外文):Robust tolerance design with quality loss
指導教授:鄧昭瑞鄧昭瑞引用關係
指導教授(外文):Teng chao jui
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:59
中文關鍵詞:品質損失變異數矩陣非對稱損失函數
外文關鍵詞:Quality lossVariance-covariance matrixAsymmetric loss function
相關次數:
  • 被引用被引用:2
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究是討論具多重功能特徵之產品的容差最佳分配。為了使產品設計能符合穩健化的要求,合理容差分配是在產品的製造成本與品質損失之間取得適當的平衡。當設計的產品具有一個以上的功能特徵時,產品的品質損失,必須考量個別特徵偏離設計值時的加成影響。針對品質特徵之不確定性為相關的產品,本研究是經由變異數與共變異數矩陣的估算來推產品之損失。此外在分析產品特徵之正、負偏差量對產品品質有不同的影響力時,本研究是以二段非對稱的二次函數來描述個別的損失。而產品所有的損失則是以分區連續的方式,在不同的範圍內使用不同係數之損失函數來估算。最後本文以螺旋彈簧之設計為例說明建議的容差設計法則。
This paper presents an optimum tolerance assignment method for the products with multiple functional characteristics. In order to approach robust product design, the assignment of dimensional tolerances should take both manufacture cost and quality loss into account. As products having more than one functional characteristic, individual properties will contribute different quality losses when characteristic parameters deviate from their design targets. For the product that the uncertainties of characteristics are correlated, it is recommended that the total quality losses be evaluated through the calculation of the variance-covariance matrix. In the case that the positive and negative deviations of product characteristics cause different effects, two asymmetric quadric segments are employed to describe the corresponded loss function. In this work, possible combinations of the characteristic parameters were classified into separated zones and the total quality loss is estimated based the average of the losses at different zones. Finally, the assignment of dimensional tolerances of a spiral spring is given to explain the proposed tolerance design method.
第一章 緒 論1
1.1前 言1
1.2文獻回顧2
1.3本文架構5
第二章 品質損失6
2.1損失函數6
2.2平均品質損失之估算9
2.2.1均勻機率分佈13
2.2.2常態機率分佈14
2.2.3其它機率分佈18
第三章 相關尺寸之品質損失19
3.1多重特徵產品之損失估算19
3.2相關特徵之品質損失23
3.3尺寸容差與品質損失26
第四章 非對稱品質損失函數31
4.1損失函數中係數之估算31
4.2分區計算品質損失36
第五章 最佳化容差設計40
5.1最佳化模組40
5.1.1設計變數與限制條件40
5.1.2目標函數的制定42
5.2應用實例44
第六章 結 論50
中文參考文獻
1. 鄧昭瑞、郭正德, 1996年, "組件容差之最佳化分配" , Newsletter of Chinese Society of Mechanism and Machine Theory, pp. 33-41.
2. 王羲濡,1973年,矩陣統計,三民書局。
3. 劉惟信,1996年,機械最佳化設計,全華科技圖書股份有限公司。
4. MADHAV S. P. 著,黎正中譯,1993年,穩健設計之品質工程,台北圖書有限公司。
5. 戴久永,1991年,統計概念與方法,三民書局。
6. 周鎮仁,1988年,機械設計,三民書局。
英文參考文獻
1. PIKE, E. W. and SILVERBERG, T. S., Sep. 1953,
Assigning tolerances for maximum Economy, Machine Design, pp. 139-146.
2. BENNETT, G. and GUPTA, L.C., 1969, Least-cost
Tolerances -I, International Journal of Production Research, 8(1), pp.65-74.
3. SPECKHART, F. H., May, 1972, Calculation of tolerance based
on a minimum cost approach, Journal of Engineering for
Industry , ASME, pp. 447-453.
4. SPOTTS, M.F. 1973, Allocation of tolerance to minimize cost of
assembly, ASME Journal of Engineering for industry, 94(2), pp.447-453.
5. CHASE, K.W. and GREENWOOD, W. H., 1988, Design issues
in mechanical tolerance analysis, Manufacturing Review, 1(1), 1990, pp.50-59.
6. MICHAEL, W. and SIDDALL, J. N., Optimization problem
with tolerance assignment and full acceptance, Journal of Mechanical
Design, ASME, 103(4), pp. 842-848.
7. WU, Z., EIMARAGHY, W. H., and EIMARAGHY, H. A., 1988,
Evaluation of cost-tolerance algorithms for design tolerance analysis
and synthesis, Manufacturing Review, ASME, 1(3), pp. 168-179.
8. DONG, Z., HU, W. and XUE, D., 1994, New production cost-tolerance
models for tolerance synthesis, Journal of Engineering for Industry, 116, pp.199-206.
9. PARKINSON, D. B., 1984, Tolerancing of component dimensions
in CAD, Computer-Aided Design, 16(1), pp. 25-32.
10. ZHANG, C. and WANG, H. P., 1993, The discrete tolerance
optimization problem, Manufacturing Review, ASME, 6(1), pp. 60-71.
11. TAGUCHI, G., ELSAYED, E.A. and HSIANG, T.C., 1989, Quality
Engineering in Production System ( New York : McGraw-Hill).
12. KRISHNASWAMI, M. and MAYNE, R. W., 1994, Optimizing
tolerance allocation based on manufacturing cost and quality loss, In
Advances in Design Automation, ASME, vol. 2, pp. 211-218.
13. JEANG, A., 1996, Optimal tolerance design for product life
cycle, International Journal of Production Research, 34(8), pp. 2187-2209.
14. WU, C. C., CHEN, Z. and TANG, G. R., 1998, Component
tolerance design for minimum quality loss and manufacturing
cost, Computers in Industry, 35, pp. 223-232.
15. SODERBERG, R., 1994, Robust design by tolerance allocation
considering quality and manufacturing cost, 20th Design
Automation Conference, ASME, vol. 2, pp. 219-226.
16. WU, C. C. and TANG, G. R., 1998, Tolerance Assignment
for products with Asymmetric Loss Function, International
Journal of Production Research, 36(9), pp. 2529-2541.
17. PIGNATIELLO, J.J., 1993, Strategies for robust multiresponse
quality engineering, IIE Transactions, vol.25(3), pp. 5-15.
18. SU, C.T. and TONG, L.I., 1997, Multi-response robust
design by principal component analysis, Total Quality
Management, 8(6), pp. 409-416.
19. OSTLE, B. and MENSING, R. W., Statistics in Research,
2nd edn. ( Iowa : The Iowa State University Press ).
20. HINDHEDE, U., 1983, Machine design Fundamentals,
(New York: John Wiley & Sons).
21. ANG, A. and TANG, W.H., 1975, Probability concepts in
engineering planning and design, (New York :Wiley).
22. BJORKE, O.,1989, Computer-Aided Tolerancing,
2nd edn. (New York: ASME).
23. ZEID, I., 1991, CAD/CAM theory and practice,
(New York: Mcgraw Hill).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top