(3.237.97.64) 您好!臺灣時間:2021/03/03 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周明和
研究生(外文):Ming-Ho Chow
論文名稱:射出成型模模具冷卻水道管路設計之研究
論文名稱(外文):A Study of Cooling Pipe Design of Injection Mold Die
指導教授:林榮慶林榮慶引用關係
指導教授(外文):Zone-Ching Lin
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:107
中文關鍵詞:射出成型模冷卻時間
外文關鍵詞:Injection MoldCooling time
相關次數:
  • 被引用被引用:4
  • 點閱點閱:547
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究的目的在於利用Holonic製造系統之理念,將複雜的射出成型模模具冷卻水道管路的配置問題簡化,並結合能量平衡法則、經驗法則與幾何因素,建構出其相關之模組關係,作為設計最佳冷卻水道管路配置的參考模組,提供工程師從事最佳化設計時的架構組織,幫助設計工程師快速的完成冷卻管路最佳化的流程圖與程式的攥寫,以得到最佳的冷卻時間與冷卻管配置。
研究中以能量平衡為依據,使用經驗法則來作為最佳化設計時的限制範圍,以建立最佳化時的模式,使程式能快速的完成最佳化,以節省最佳化設計時所花費的時間。並針對不同的成形品幾何形狀所引發的冷卻管配置問題,引用向量與簡易的數學計算式來處理,進一步建構基本幾何特徵面符號與資料庫。本文先以一矩形平板為研究對象,並使用有限差分法來驗證其可行性,再依成形品之形狀,運用所建構的基本幾何特徵面來組合表示,引入等效面積的轉換觀念,來處理簡化形狀變化較緩之非矩形平板成形品的冷卻水道管路之配置,而對於由不同空間平面之矩形平板組成的ㄇ字形矩形平板,則使用長度展開來處理,將其轉為同一平面之平板,並結合等效面積轉換方式來處理其冷卻水管實際管路的配置與型式的選擇。至於實際上管路之配置與管型式的選擇,則以達到良好的熱效率為其選擇與調整的依據。
The purpose of this study is used paradigm of the Holonic Manufacturing System to simplify the layout of the cooling pipe design of Injection Mold Die. On base the experience rule, energy equilibration and the shape factor. It is building the relation of the Mold for the layout, supply the structural model and speeding up to finish the flow chart of the optimization and writing program. We can get the optimal cooling time and the layout of cooling pipe design.
In this research we are base on the energy equilibration and use the experience rule as the constraint domain to build the optimization model, speed up to finish optimal design and reduce the period of time for the optimization. We aim the difference shape of the product generation the problem that layout the pipe, and refer the vector and mathematics follow to build the characterize shape’s single and database.
The first case, we aim the rectangle plate and use the finite difference method to identify the practicability. We follow the shape of product and employ the construct characterize shape to indicate it. Using the equivalent area conception to simplify the irregular shape and layout the cooling pipe. On the other hand, whereat the ㄇ-shape. We use the length’s expand concept to layout the cooling pipe
中文摘要I
英文摘要II
誌 謝III
目 錄IV
圖表目錄VI
第一章 緒論1
1.1 前言1
1.2 研究動機與目的2
1.3 文獻回顧3
1.4 論文架構5
第二章 射出成型模模具冷卻系統概論8
2.1 模具冷卻系統之回顧8
2.2 射出成型冷卻過程之重要性8
2.3 模具之冷卻機構9
2.4 模具冷卻設計的考慮事項與設計準則9
第三章HOLONIC製造系統14
3.1 HOLONIC製造系統簡介14
3.2 HOLON與HOLARCHY之關係及架構14
3.3 HMS概念與射出成型模模具冷卻系統冷卻管路之最佳化設計15
第四章基本假設與理論公式26
4.1基本假設26
4.2冷卻時間簡易計算法27
4.3簡易冷卻法28
4.4影響冷卻時間的因素30
4.5熱傳導之幾何形狀因子31
4.6冷卻水管之位置與尺寸33
第五章冷卻水管之總散熱表面積39
5.1基本形狀特徵面40
5.2特徵面之組合43
5.3非矩形平板之等效矩形轉換44
5.3.1等效矩形形狀尺寸之演算步驟44
5.4 展開之等效長度46
5.4.1執行步驟48
第六章 最佳化之方法與策略58
6.1最佳化問題的數學模式與數值方法58
6.2冷卻時間最佳化60
6.3冷卻水管位置之最佳化63
第七章 案例研究70
7.1案例一70
7.2案例二77
7.3案例三86
第八章 結論與建議99
8.1結論99
8.2 建議100
參考文獻102
作者簡介107
1. D. V. Rasato and D. V. Rosato, ”Injection Molding Handbook”, Van Nostrand Reinhold Company, NY, 1985.
2.S. C. Chen, S. Y. Hu, and A. Davidoff, ”Computer-Aided Cooling System Design and Analysis of the Injection Molding Cooling Process”, The Chung Yuan Journal XIX, PP82-96, 1990.
3.S. Kening and M. R. Kamal, ”Cooling Molded Parts A Rigorous Analysis”, Society of Plastics Engineers Journal, July, PP50-57,1970.
4.C. Gutfinger, E. Broyer and Z. Tadmor, ”Melt Solidification in Polymer Processing”, Polymer Engineering and Science, 15, PP515-524, 1975.
5.W. Dietz, ”A Cooling Time Model for Plastics Processing Operations”, Polymer Engineering and Science, 18, PP1030-1036, 1978.
6.C. Austin, ”Mold Cooling”, Society of Plastics Engineers Technique Papers, 31, PP764-766, 1985.
7.K. J. Singh, ”Mold Cooling”, Computer-Aided Engineering for Injection Molding, E. C. Bernhardt(ed.), Hanser Publisher, Munish, 1983.
8.K. J. Singh, ”Design of Mold Cooling System”, Injection and Compression Molding Fundamentals, Avraam I. Isayev(ed.), Marcel Dekkew, New York, 1987.
9.K. J. Singh and H . P. Wang, ”Computer Analysis to Optimize Mold Cooling Process”, Society of Plastics Engineeers Technique Papers, 28, PP330-331, 1982.
10.K. J. Singh, ”Computer Software for Plastic Cooling Analysis A New Approach”, Society of Plastics Engineers Technique Papers, 30, PP962-946, 1984.
11.K. R. Schauer, ”Computer — Aided Mold Cooling Design Improves Part Quality and Overall Productivity”, Society of Plastics Engineers Technique Papeers, 31, PP767-768, 1985.
12.M. R. Barone and D. A. C0aulk, ”Optimal Arrangement of Holes in a Two-Dimensional Heat Conductor by A Special Boundary Integral Method”, International Journal Method for Engineering, 18, PP657-685, 1982.
13.M. R. Barone and D. A. Caulk, ”Optimal Thermal Design of Compression Molds for Chopped—Fiber Composites”, Polymer Engineering and Ccience, 21, PP1139—1148, 1981.
14.M. R. Kamal and P. G. Lafleur, ”Heat Transfer in Injection Molding of Crystallizable Polymers”, Polymer Engineering and Science, 24, PP692-697, 1984.
15.T. H. Kwon, S. F. Shen and K. K. Wang, ”Computer—Aided Cooling System Design for Injection Molding”, Society of Plastics Engineers Techniqe Papers, 32, PP110-11, 1986.
16.T. H. Kwon, ”Mold Cooling System Design Using Boundary Element Method”, ASME Journal of Engineering for Industry, 110, PP384—394, 1988.
17.K. Hinasekhar, K. K. Wang and J. Lottey, ”Mold Cooling Simulation in Injection Molding of Three—Dimensional Thin Plastic Parts”, Numerical Heat Transfer with Personal Computers and Supercomputing, Proc. National Heat Transfer Conference, Philasephia, PA, ASME-HTD-110, PP129—136, 1989.
18.K. Himasekhar, C. A. Hiber and K. K.Wang, ”Computer-Aided Design Software for Cooling System in Injection Molding”, Society of Plasics Engineers Technique Papers, 35,PP352-355, 1989.
19.M. Reszayat and T. Burton, ”A Special Boundary Integral Formulation to Simulate a Manufacturing Process”, Symposium of Advanced Boundary Element Methods”, Applications in Solid and Fluid Mechanics, Spring-Verlag, New York, 1987.
20.L. T. Manzione(ed.), ”Application of Computer-Aided Engineering for Injection Molding”, Hanser Publisher, Munish, 1987.
21.S. C. Chen and S. Y. Hu, ”Simulations of Cyclic Average Mold Cavity Surface Temperature in Injection Mold Cooling Process”, Internaational Communicationa in Heat and Mass Transfer, 18, No.6, PP823-832 1991.
22.M. R. Barone and D. A. Caulk, ”Optimal Thermal Design of Injection Molds for Filled Thermosets”, Polymer Engineering and Science, 25, PP608-617, 1985.
23.M. R. Barone and D. A. Caulk, ”Special Boundary Integral Equation for Approximate Solution of Laplace’s Equation in Two-Dimensional Regions with Circular Holes”, Quarterly Journal of Mechanics and Applied Mathemaics, XXXIV, Part 3, PP265-286, 1981.
24.M. R. Barone and D. A. Caulk, ”Special Boundary Integral Equation for Approximate Solution of Potential in Three-Dimensional Regions with Slender Cavities of Circular Cross-Section”, IMA Journal of Applied Mathematics, 35, PP311-325, 1985.
25.K. Himasekhar, ”Numerical Simulation of Mold Heat Transfer of Injection Molded Plastic Parts Using a Modified Three-Dimensional Boundary Element Method”, International Communication in Heat and Mass Transfer, 16,PP55-64, 1989.
26.K. Himasekhar and K. K. Wamg, ”C-COOL: A CAE Tool for The Design of Cooling System in Injection Molding”, The Sixth Annual Metting of ASME, 1990.
27.H. H. Chiang, K. Himasekhar, N. Sanhanam and K. K. Wang, ”Integrated Simulation of Fluid Flow and Heat Transfer in Injection Molding for the Prediction of Shrinkage and Warpage”, The Winter Annual Meeting of ASME, 1991.
28.S. C. Chen, and Y. C. Chung, ”Simulations of Cyclic Transient Mold Cavity Surface Temperature in Injection Mold Cooling Process”, International Communication in Heat and Mass Transfer, 19, No.4, PP559-568, 1992.
29.L. S. Turng and K. K. Wang, ”A Computer-Aided Cooling-Line Design System for Injection Molds”, ASME Journal of Engineering for Industery, 112, PP161-167, 1990.
30.K. Himaasekhar, J. Lottey and K. K. Wang, ”CAE of Mold Cooling in Injection Molding Using a Three-Dimensional Numerical Simulation”, ASME Journal of Engineering for Industry, 114, PP213-221, 1992.
31. J. R. Agre, G. Elsley, D. McFarlane, J. Cheng and B. Gunn, ”Holonic Control of a Water Cooling System for a Steel Rod Mill”, Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and Automation Technology, PP134-141, 1994.
32. A. H. Overmars and D. J. Toncich, ”Hybrid FMS Control Architecture Based on Holonic Principles”, Internatiional Journal of Flexible Manufacturing Systems, Vol. 8, No. 3, PP279-280, 1996.
33.周文祥, ”C-Mold 射出成型模具設計”, 台北, 文京圖書, AC Technology, ISBN 957-512-164-3 , 民國八十八年.
34. P. Ioannis and Z. Qin, ”Optimization of Injection Molding Design”, Polymer Engineering and Science Vol.30, No.15, P875, Mid-August 1990.
35. A. Kolestler, ”The Ghost in the Machine”, London, 1967.
36. A. Tharumarajah, A. J. Wells and L. Nemes, ”Comparision of the Bionic, Fractal and Holonic Manufacturing System Concepts”, Int. J. Computer Integrated Manufacturing, Vol. 9, No.3, PP 217-226, 1996.
37.張榮語, ”射出成型模具設計”, 台北, 高立圖書, ISBN 957-584-324-X 民國八十四年.
38.A. B. Glavill and E. N. Denton, ”Injection-Mold Design Fundamentals”, by The Machinery Publishing Co. Ltd, 1977
39. T. M. Yeh, T. Y. Chen and H. H. Shih, ”A Practical Approaching for the Injection Mold Cooling Analysis”, Preprints of Papers Presented at Annual Polymer Symposium, PP26-27, June, 1987.
40. W. M. Rohsenow and J. P. Hartnett, ”Handbook of Heat Transfer”, Mc Graw-Hill Book Co. , New York, , PP3-21,1973.
41.徐業良, ”工程最佳化”, 台中, 宏明圖書, ISBN 957-99369-1-9, 民國八十四年.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔