(3.235.11.178) 您好!臺灣時間:2021/03/05 15:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余啟瑞
研究生(外文):Yu, Chi-Rey
論文名稱:電磁放電成像技術於材料性質非破性檢測與評估之應用研究
論文名稱(外文):The Applicability of Electromagnetic Discharge Imaging Technique in Nondestructive Evaluation Of Material''s Property
指導教授:吳翼貽
指導教授(外文):Wu, Albert Ye-Ee
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:148
中文關鍵詞:電磁放電成像技術電暈放電陶斯松濃度塑變量檢測非破壞性檢測
外文關鍵詞:EDIcorona dischargeChlorpyrifos concentrationplastic deformation detectionnondestructive evaluation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
  
本論文旨在探討應用電磁放電成像技術(EDI)於材料性質之非破壞性評估能力,針對材料表層及次表層性質改變(表面陶斯松濃度變化、6061鋁金冷軋延塑變),及材料內部性質變化(內部氫含量變化、及中碳鋼回火所引起之微觀變化效應),及其各種影響因素,並結合影像處理技術予以進行實驗探討。其原理乃基於當材料性質發生變異時,會引起EDI氣體放電強度改變,而據以評估及檢測材料性質之變化量。
針對材料表層及次表層性質改變所做之實驗結果顯示;於低濃度時(<0.4%),EDI放電強度與陶斯松水溶液濃度間呈線性正比關係。從具有各種不同濃度陶斯松水溶液之EDI灰階分佈曲線中具有五個不同特徵灰階值,其中三個特微灰階值可分別對應至陶斯松之三種主要成份。鋁合金經塑變後,由於內能增加及電氣性能衰退二者間交互作用,使得鋁合金EDI放電強度與塑變之對應曲線於25%塑變量後產生飽和現象;惟當頻率由420Hz調高至820Hz時,此種飽和現象即告消失,EDI放電強度與塑變量間呈現線性正比關係。此部份之實驗結果顯示,若能適當選定分析變數之範圍及/或區域、及設定適合之實驗參數的話,EDI技術將可用於檢測及評估材料表層及次表層性質之改變。
於針對材料內部性質變化所做之實驗結果顯示;鋁合金之EDI放電強度與氫含量間呈現線性正比關係;碳鋼則由於組織結構影響,EDI放電強度與其氫含量之對應曲線中呈現二種不同比例常數。惟碳鋼之氫影響區面積與氫含量間則祗呈單一線性比例關係。殘留沃斯田鐵分解成片狀雪明碳鐵為導致低溫回火脆性之主因,此微觀結構變化雖無法反應於硬度變化,卻會反應在EDI放電強度之上。1045中碳鋼淬火/回火處理後之硬度值與EDI影像之高亮度區面積百分比間具有良好線性關係。由以上實驗結果顯示,可應用EDI原理發展一套可攜帶式儀器,以進行現場氫含量及微觀結構變化之非破壞性檢測評估工作。
以上各項實驗結果均顯示,在某一特定範圍內,各種材料性質變化量間與EDI影像特徵間具有線性正比關係。綜合上述實驗結果,藉由影像分析技術之輔助,電磁放電成像技術可用來從事材料之各種特性及微觀結構的非破壞性檢測評估工作。
Abstract
With the aid of imaging analysis methods, the Electromagnetic Discharge Imaging (EDI) technique is used as a nondestructive mean to evaluate the variations of materials properties in this research. Experiments were conducted to study the variations of EDI discharge images caused by the changes of surface and subsurface properties (the variation of the surface concentration of Chlorpyrifos of specimen, and the cold rolling plastic deformation of 6061 aluminum alloy), and the changes of internal properties (the variation of hydrogen content in metal, and the tempering property variation of the 1045 steel). By relating the changes of materials properties with the variations of EDI discharge images, a nondestructive method can be developed to determine the variation of properties occurred in the materials.
The experimental results associated with the changes of surface and subsurface properties showed that, the EDI discharge intensity increases with increasing Chlorpyrifos concentration up to 0.4% where a saturation limit is reached. Three characteristic gray levels were found in the gray-level distribution curve of EDI discharge image. These three characteristic gray levels can be used to rank concentration of Chlorpyrifos. For aluminum specimens, the EDI discharge intensity increases with increasing rolling ration up to 25%, and reaches a saturation limit. Further analysis show that, as the AC frequency increased, the discharge intensity becomes proportional to the increase of rolling ratio.
The experimental results associated with the changes of internal properties showed that, a linear relationship between the EDI discharge intensity and the hydrogen content in aluminum specimens is observed. Because the interaction between the beneficial and the adverse effects to the EDI discharge intensity caused by hydrogen atoms, the plot of the EDI discharge intensity as a function of hydrogen content comprises two straight lines of different slops for steel specimens. Further analysis show that a linear relationship between the hydrogen-affected zone and the hydrogen content in steel specimen can be obtained. These results indicate that the EDI technique can be used to determine the hydrogen content in metals through the analysis of EDI discharge images. A linear relationship between the hardness value and the high-brightness region of EDI image is observed for the quench/tempered 1045 carbon steels. The dissociation of the retained austenite to cementite and ferrite is the main reason of the TME. Such a microstructural variation is reflected on the change of EDI discharge intensity.
These experimental results showed that, within a specific range, a linear proportional relationship between the EDI discharge intensity and the changes of the materials properties is observed. Based on these results, it is concluded that the EDI technique, with the aid of imaging analysis methods, can be used to evaluate the variations of materials properties nondestructively.
封面
中文摘要
英文摘要
誌謝
目錄
圖索引
表索引
第一章 前言
第二章 文獻回顧
第三章 EDI理論及其影響參數3.1 EDI 基本原理(fundamentall theory of EDI)
3.2 影響DEI放電特性之參數 (influential parameters of EDI process)
3.3 塑變之影響 (effect of the plastic deformation)
3.4 氫原子擴散、捕集位置及其影響
3.5 回火微觀組織對放電強度之影響
3.6 影像處理
第四章 實驗裝置及方法
4.1 EDI裝置
4.2 實驗方法
4.3 EDI 影像拍攝
4.4 影像處理
第五章 實驗結果
5.1 表面陶斯松濃度評估
5.2 6061鋁合金塑變量檢測研究
5.3 金屬內部含氫量檢測
5.4 回火中碳鋼微觀結構及硬度之檢測
第六章 討論
6.1 材料表層與次表層性質改變之檢測與評估
6.2 材料內部性質改變之檢測與評估
第七章 結論
未來研究方向
參考文獻
附錄
作者簡介
參考文獻
1. S. D. Kirlian, V. Kh. Kirlian, “Photography and Visual Observation by Means of High-Frequency Currents”, Zh. Nauchn. Prikl. Fotogr. Kinematogr. Vol. 6, No. 6, pp. 97-403 (1961).
2. E. Kuffel and M. Abdullah, “High-Voltage Engineering”, New York, Pergamon Press, 1970.
3. S. Kripner and D. Rubin, eds., “Galaxies of Life”, Gorden and Breach, 1973.
4. S. Prat. and J. Schlemmer, “Electrophotography”, Journal of the Biol. Phot. Asso., Biological Photographic Association, Vol.7, No.4, pp. 225-227, 1939.
5. N. Telsa, “Lectures, Patents, Articles”, Nikola Tesla Museum Beograd Yugoslavia, pp. 834, 1956.
6. S. Ostrander and L. Schroeder, “Physics Discoveries Behind the Iron Curtain”, Bentam Books, Inc., 1971.
7. W. D. Tiller, “ Some Physical Network Characteristics of Acupuncture Points and Meridians”, Trans. of Acupuncture Symposium, the Academy of Parapsychology and Medicine, 1972.
8. Y. Omura, “Acupuncture, Infrared Thermography and Kirlian photography”, Acupuncture and Electro-therapeutic. Res. Int. J., Vol. 2, No. 1 and 2, pp. 43-86, 1976.
9. David G. Boyers, William A. Tiller, “Corona Discharge Photography”, J. Appl. Phys., Vol.44, no. 7, pp. 3102-3112, Jul 1973.
10. S. D. Kirlian, V. G. Adamenko, V. Kh. Kirlian and K. F. Shevkunov, “Technique for Inspection of the Physical State of a Metal”, Inventor’s Certificate No. 336586, Byull. Izobret., No. 14, 1972.
11. D. E. Lord and R. R. Petrini, “High Voltage Photography Applied to Materials Science”, Lawrence Livermore Laboratory Tech. Rep., UCRL-51702, TED-4500, UC-38, 1974.
12. D. E. Lord and R.R. Petrini, “24th Defense Conference on Nondestructive Testing”, San Diego, California, No. 10, pp. 578-602, 1975.
13. Y. Omura, “Acupuncture, Infrared Thermograph and Kirlian photography”, Acupuncture and Electro-Therapeutic Res. Int. J., Vol. 2, No.1-2, pp. 43-86, 1976.
14. N. J. Neilsen and J. F. Shackeford, “Nondestructive Inspection of Surface Topography by Electrical Discharge Imaging”, Int. Advances in Nondestructive Testing, Vol. 8, pp. 151-165, 1981.
15. J. M. Meek, J. D. Craggs, F. M. Penning, “Electrical breakdown of gases”, Wiley, New York, 1978.
16. S. F. Romanii, Z. D. Chernyi, “High Frequency for the Inspection of Dielectric Material”, Defektoskopiya, No. 5, pp. 47-51, May 1979.
17. S. D. Kirin, V. G. Adamenko, V. Kh. Kirlian, and K. F. Shevkuno, "Technique for Inspection of the Physical State of a Metal", Inventor’s Certificate No.336586, Byull. Izobret., No.14, 1972.
18. S. D. Kirlian, “Technique for Obtaining Photographs of various Kinds of Objects”, Inventor’s Certificate No.106401, Byull. Izobret, No.6, 1957.
19. “Electromagnetic Magnetic Discharge Image Detecting Flaws in Materials and Structures”, BIFSM of Lehigh University at Taiwan, and OPS of Combined Service Force, 1991.
20. J. G. Michopoulos and G. C. Sih, “Electromagnetic Discharge Imaging Technique As a Nondestructive Evaluation of Material Imperfections”, Lehigh University, IFSM-85-132, Dec. 1984.
21. G. C. Sih and J. G. Michopoulos, “Nondestructive Detection of Damage in Aluminum: Electromagnetic Discharge Imaging”, Theoretical and Applied Fracture Mechanics, Fracture Mechanics Technology, Vol. 5, No. 1, Feb. 1986.
22. Y. E. Wu and C.R. Yu, “Nondestructive evaluation of plastic deformation in AA6061 aluminum alloy by electromagnetic discharge image”, Theoretical and Applied Fracture Mechanics, 28(1997), pp.157-164.
23. Y. E. Wu, C.R. Yu, G. C. Sih, “Surface concentration of Chlorpyrifos evaluated by Electromagnetic Discharge Image Technique”, Theoretical and Applied Fracture Mechanics 30(1998), pp. 39-49.
24. 余啟瑞,“電磁放電成像術在材料非破壞檢測上之應用研究”,國立台灣科技大學機械研究所碩士論文,1990.
25. 林靜賢,“應用電磁放電成像術於鋼鐵內氫含量之檢測”,國立台灣科技大學機械研究所碩士論文,1992.
26. 王建國,“應用電磁放電成像術於油漆塗層下腐蝕及材料微觀組織之檢測”,國立台灣科技大學機械研究所碩士論文,1991.
27. 王振吉,“電磁放電成像術於溶液濃度及多孔性材料檢測之應用”,國立台灣科技大學機械研究所碩士論文,1993.
28. M. A. Oxon, D. Phil., D. SC. Oxon, F. Inst. P., “Ionization and Breakdown in Gases”, Science paperback, and Methuen & Co. Ltd., 1966.
29. K. Huang, “Statistical Mechanics”, Wiley, New York, 1978.
30. E. E. Kunhardt and L. H. Luessen, “Electrical Breakdown and Discharges in Gases”, New York, Published in cooperation with NATO Scientific Affairs Division, Plenum Press, 1983.
31. E. Nasser, L. B. Loeb, “Impulse Streamer Branching from Lichtenberg Figure Studies”, J. Appl. Phys. pp. 3340-3348, 1963.
32. E. Kuffel and M. Abdullah, “High-Voltage Engineering”, New York, Pergamon Press, 1970.
33. G. Raju, J. A. Harrison, and J. M. Meek, “Absorption of Photon from Gas Discharge”.
34. B. E. Cherrington, “Gaseous Electronics and Gas Laser”, New York, Pergamon Press, 1979.
35. Martin A. Plonus, “Applied Electromagnetic”, New York, McGraw-Hill, 1978.
36. C. P. Symth, “Dielectric Behavior and Structure”, New York, McGraw-Hill, 1955.
37. R. V. Latham, “High Voltage Vacuum Insulation: The Physical Basis”, Acadmemic Press, 1981.
38. R. A. Oriani, “Hydrogen in Metals”, Proc. Symp. Stress Corrosion Cracking, pp. 32-41, 1967.
39. S.L.I Chan, H. L. Lee and J. R. Yang, “ Effect of Retained Austenite on the Hydrogen Content and Effective Diffusivity of Martensitic Structure”, Metall. Trans. A, p.p. 145, 1990. vol. 22A, n11, pp. 2579-2586, Nov 1991.
40. Chan, Sammy Lap Ip, “Hydrogen Trapping Ability of steels with Different Microstructure”, Journal of Jan, vol. 2, no. 1, pp. 43, 1999.
41. T. Asaoka and T. N. Veeiroglo, “Metal-Hydrogen System”, Pergamon Press, pp.197, 1982.
42. Troiano Festschrift, Hehemann R. F., Gibala, R., Troiano, A. R., “Hydrogen Embrittlement and Stress Corrosion Cracking”, Institute of Technology, American Society for Metals, 1984.
43. R. Papoular, “Electrical Phenomena in Gases”, New York, Iliffe Book, American Elsevier Pub. Co., 1965.
44. F. W. Peek, “Dielectric Phenomena in High Voltage Engineering”, New York: McGraw-Hill, 1910.
45. S. C. Brown, “Basic Data of Plasma Physics”, M.I.T Press Cambridge, Massachusetts, 1959.
46. Y. E. Wu and C. R. Yu, “Using Electromagnetic Discharge Imaging Technique to Determine the Hydrogen Contents in Metals”(Accept for publication on JCSME.
47. F. Llewellyn-Jones, “Ionization and Breakdown in Gases”, Methuen & Lo Ltd., 1972.
48. 陳鴻賓,高道德,“金屬物理性能及試驗”,全華科技圖書股份有限公司,75年11月版。
49. G. Krauss, “Principles of Heat Treatment of Steel”, Metals Park, Ohio: ASM, 1980.
50. G. Thomas, “Retained Austenite and Tempered Martensite Embrittlement”, Met. Trans, A, Vol. 9A, p439-450, 1978。
51. J. P. Mater Kowski and G. Krauss, “Tempered Martensite Embrittlement in SAE 4340 Steel”, Met. Trans. A, Vol 10A, p1643-1651, 1979。
52. S. K. Banerji, C. J. McMahon, Jr. and H. C. Feng, “ Intergranular Fracture in 4340-type Steels: Effect of Impurities and Hydrogen”, Met. Trans A, Vol 9A, p237-247, 1978。
53. H. Ohtani and C. J. McMahon, Jr., “ Modes of Fracture in Temper Embrittled Steels”, Acta Metallurgica, Vol 23, p377-386, 1989。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔