跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳警裕
研究生(外文):Jing-Yu, Chen
論文名稱:微型冷卻器的研發
論文名稱(外文):Miniature Cooling Systems
指導教授:陳冠
指導教授(外文):Kuan Chen
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:87
語文別:中文
論文頁數:207
中文關鍵詞:微機電系統微能量系統微型Joule-Thomson冷卻器微型氨水吸收槽微型蒸發器
外文關鍵詞:Micro enengy systemsminiature Joule-Thomson refrigerationmicro-scale Ammonia vapor- absorbermicro evaporatormicroelectromechanical systems
相關次數:
  • 被引用被引用:0
  • 點閱點閱:579
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是針對微能量系統中的Joule-Thomson( J-T )低溫冷卻器,以及氨水吸收式冷卻系統中的微型吸收槽( micro absorber ),將兩者微小化到微米至毫米的尺度。
微型J-T致冷器方面,雖然早已發展多年,性能也相當不錯,但製作成本很高,而以光蝕刻方式製作( 如:MMR公司產品 )的成功率不高,在應用上並不廣泛;因此,本研究期望能做出一個應用更廣的微型J-T致冷器,藉由製作出不同型式的J-T致冷器,加以比較彼此的差別,找出尺寸設計與不同設計參數對致冷器的影響。經不斷改進後得到降溫效果最好的致冷器,並觀測高速噴流( high-speed jet )的流場現象、管路中的Friction chocking效應。本實驗中曾觀測到數十微米管徑出口,在高壓下的膨脹壓縮波。
微型吸收槽方面,雖然PNNL( Pacific Northwest National Laboratories )所研究出的微型熱泵( micro heat pump )元件,有些已經可作為微型蒸發器與微冷凝器,但是,有關微型吸收槽部分的文獻卻相當缺乏。本實驗經由兩種不同的設計,將複雜的三維氣泡變成二維加以分析,藉由觀測氨氣氣泡在純水中的變化,以定量的方式分析出在不同流量下,氣泡消失的位置,間接找出微型吸收槽的尺寸應如何設計?才會在既定的純水與氨氣流量下,使氨氣完全被水吸收,並藉由氨水出口的pH值,算出氨水的分子濃度。將所有資料列表,作為將來吸收槽微小化的依據,便是本實驗的目的。

Two miniature cooling systems were investigated in this thesis. The first system was the Joule-Thomson (JT) cooler which utilizes gas as the coolant.
The second one was the vapor-absorption cooling system. Since the micro pumps of miniature vapor-absorption systems are under developing, only the absorber of the second cooling system was designed and tested.
 In the first part of this thesis study, JT coolers of different designs and sizes were fabricated from micro tubes of circular cross section. The simple configuration of the present JT cooler design makes it suitable for batch fabrication using the photo lithography technique if the circular tubes were replaced by etched micro channels. The inner diameters of the throttling devices are a couple of hundred microns while the diameters of the concentric-tube heat exchanger range from a few hundred microns to a couple of millimeters . Between the throttling device and the heat exchanger was a expansion chamber which served as the cold end of the cooling system. The lowest temperature in the cooler was found to be at a distance approximately 3 mm downstream of the throttling device exit.
 Gas dynamics theories were employed for analyzing the high-pressure gas flow in the throttling device and in the vicinity of its exit. Under normal operation conditions the throttling device was choked due to the strong friction effect encountered in micro channel flows. Various expansion and compression waves appeared near the exit of the throttling device and optical methods and techniques were employed for flow visualization. The observed wave patterns at high operating pressures differed considerably from the diamond-shape wave patterns commonly occurred at the exit of an under-expanded nozzle.
 The second part of this thesis focused on miniaturization of vapor- absorption cooling system. Silicon-based evaporators and condensers of micro absorption refrigeration system have been developed before. In the present study two miniature absorbers were designed and constructed. The planar absorber has a straight channel, 110 mm deep and more than 10 centimeter long,machined on an stainless steel block. The sizes and locations of the gas and water inlets were carefully designed to generate gas bubbles to be generated,resulting in easy flow visualization and accurate measurements of bubble volume variation. The objective of the vapor-absorption experiment is to determine the required reactor size for the absorption of Ammonia bubbles in micro channels and micro tubes at different flow rates. These information is very useful to design of a miniature vapor-absorption refrigeration system.

中文摘要 ---------------------------------------------Ⅰ
英文摘要 ---------------------------------------------Ⅲ
致  謝 ---------------------------------------------Ⅴ
目  錄 ---------------------------------------------Ⅶ
符號索引 ---------------------------------------------Ⅹ
圖片索引 --------------------------------------------ⅩⅢ
第一章 緒 論 -------------------------------------- 1
第二章 研發原理與相關文獻探討
2.1 Joule-Thomson 致冷器的原理與文獻探討
2.1.1 簡介Joule-Thomson效應及原理應用 --------------- 5
2.1.2 本實驗的研發設計概念 ------------------------- 10
2.2 吸收式致冷器微小化的初步設計概念
2.2.1 吸收式冷卻系統介紹與原理 --------------------- 12
2.2.2 微小化的設計概念 ----------------------------- 13
第三章 實驗設備、儀器與方法
3.1 實驗設備
3.1.1 微型Joule-Thomson冷卻系統 -------------------- 20
3.1.2 微型氨水吸收槽 ------------------------------- 35
3.1.2.1 工作流體 ----------------------------------- 36
3.1.2.2 微型平板式氨水吸收槽 ----------------------- 40
3.1.2.3 微管式氨水吸收槽 --------------------------- 50
3.2 實驗儀器
3.2.1 微型Joule-Thomson冷卻系統 -------------------- 55
3.2.2 微型氨水吸收槽 ------------------------------- 59
3.3 實驗步驟與方法
3.3.1 微型Joule-Thomson冷卻系統 ---------------------63
3.3.2 微型氨水吸收槽 --------------------------------69
第四章 結果與討論
4.1 J-T系統主體的設計概念
4.1.1 節流設備與膨脹腔尺寸的最佳化設計 --------------72
4.1.2 熱交換器的改進過程 ----------------------------74
4.1.3 本實驗最佳的微型Joule-Thomson冷卻器 -----------93
   4.2 微型氨水吸收糟----------------------------- 97
   4.3 流場現象討論與觀測 ---------------------- 106
4.1.4 微型Joule-Thomson冷卻系統--------------------- 107
4.1.5 微型氨水吸收槽 ------------------------------ 116
第五章 理論分析 ------------------------------------119
參考資料-------------------------------------------- 125
附表----------------------------------------------- 185
附錄 -----------------------------------------------190
作者簡介-------------------------------------------- 207

[1] Ameel, T. A., Warrington, R. O., Wegeng, R. S. and Drost, M. K., "
Miniaturization Technologies Applied to Energy System," Energy Convers. Mgmt
Vol. 28, No. 10-13, 1997, pp. 969-982.
[2] Chen, K. and Chen, J. Y., "A Joule-Thomson Cooler Fabricated from Micro
Tubes of Different Diameters," SPIE. 1999.
[3] Little, W. A., "Microminiature Refrigeration," American Institute of
Physics, Rev. Sci. Instrum, Vol. 55, No. 5, May 1984, pp. 661-680.
[4] Jepson, R. E., Villaume, H. F. and Arther, E., "Cryogenic Refrigeration
System," US Patent No. 3,320,755, 1967.
[5] Buller, J. S., "A Miniature Self-regulating Rapid-cooling Joule-Thomson
Cryosat," Advances in Cryogenic Engineering, Vol. 16, 1971, pp. 205-213.
[6] Geist, J. M. and Lashmet, P. K., "Miniature Joule-Thomson
  Refrigeration System," Advances In Cryogenic Engineering, Vol.
  5, 1960, pp. 324-331.
[7] Herrington, R. E. and Taylor, C. O., "Adjustable Joule-Thomson Cryogenic
Cooler with Downstream Thermal Compensation," US Patent No. 4,028,907, 1977.
[8] Giest, J. M. and Lashmet, P. K., "Miniature Joule-Thomson efrigeration
Systems," Advances in Cryogenic Engineering, Vol. 5, 1971, pp. 324-331.
[9] Albagnac, R. D. and Silly, D. J., "Device for Regulation a Joule-Thomson
Effect Refrigerator," US Patent No. 4,419,867, 1983.
[10] Chien, S. B., Chen L. T. and Chou, F. C., "A Study on the Transient
Characteristics of a Self-regulating Joule-Thomson Cryocooler," Cryogenics,
Vol. 36, No. 12, 1995, pp. 979-984.
[11] Chou, F. C., Pai, C. -F., Chien, S. B. and Chien, J. S. Chen, "Preliminary
Experimental and Numerical Study of Transient Characteristics for a Joule-
Thomson Cryocooler," Cryogenics, Vol. 35, No. 5, 1995, pp. 311-316.
[12]吳三明, "J-T致冷器數學模式建立及暫態性能分析模擬", 國
  立中央大學機械工程研究所碩士論文, 1992.
[13] 白清芳, "流量調節型低溫致冷器之模擬分析", 國立中央大學 機械工程研究所碩士
論文, 1994.
[14] Chou, F. -C., Wu, S. -M. and Pai, C. -F., "Prediction of Final Temperature
Following Joule-Thomson Expansion of Nitrogen Gas," Cryogenics, Vol. 33, No.
9, 1983, pp. 857-862.
[15] Bodio, E., and Wilczek, M., "Analysis of the Starting Time of The Joule-
Thomson Microliquefier," Cryogenics, Vol. 21, 1981, pp. 704-706.
[16] Wu, P. and Little, W. A., "Measurement of Friction Factors for the Flow
of Gases in Very Fine Channels Used for Microminiature Joule-Thomson
Refrigerators, " Cryogenics, May 5, 1983, pp. 273-275.
[17] Wu, P. and Little, W. A., "Measurement of the Heat Transfer
Characteristics of Gas Flow in Fine Channel Heat Exchanger Used for
Microminiature Refrigerators, " Cryogenics, August , 1984, pp. 415-420.
[18] 王文博, "吸收式冷凍空調系統", 能源查核服務期刊 第40
  期,1990, pp. 2-24.
[19]王文博, "吸收式冷凍機之原理及應用", 電機技師期刊 第45
  期, 1990, pp. 47-52.
[20] Lammerink, T. S. J., Elwenspoek, M. and Fluitman, J. H. J.,  "
Integrated Mcro Dosing System," IFEE MEMS, 1993, pp. 254-259.
[21] Huang, B. J., Chou, S. F., Gon, M. S. and Huang, D. S., "Design Analysis
of Absorption Refrigeration System," Co-Sponsored by Department of Mechanical
Engineering National Taiwan University, April 1977, pp. 1-27.
[22] 丁乃庶, 冷凍工程學, 五洲出版社圖書有限公司, 1964, pp. 155- 203.
[23] Matheson Inc., Gas Data Book 6ed, New York, 1980. pp. 34, 344,
365, 522.
[24] Kenneth Wark, JR., Advanced thermodynamics for Engineers,
pp. 523-524, 1966.
[25] MMR Technologies, Inc., "Perform Research at Cryogenic Temperatures
without Cryogenic Liquids," Mountain View, California, 1995.
[26] MMR Technologies, Inc.
  http://www.mmr.com/nitrogen.html
[27] MMR Technologies, Inc.
http://www.mmr.com/vacpump.html
[28] MMR Technologies, Inc.
  http://www.mmr.com/regulator.html
[29] Parker Instruments, Inc., Fluid Connectors, October, 1990.
  http://www.parker.com.
[30]許守平, 冷凍空調原理與工程(上), 全華科技圖書股份有限公
  司,May 1984, pp. 44-51 & pp. 110-113.
[31]漢寧工程有限公司, 李良梧, "溴鋰水與氨水吸收式冷熱水機
  的技術資料(下)", 冷凍空調技術雜誌社,8月, 1992, pp. 53-57.
[32] 張永爵, 機械材料實用知識, 機械技術出版社, 1987, 附錄三.
[33]彭戡平, 李秋貴, 機械材料選用手冊, 全華科技圖書股份有
  公司,1985. pp. 14 & pp. 193.
[34] Swagelok Instruments, Inc., Tube Fittings, 1990.
  http://www.swagelok.com.
[35] Aalborg Instruments & controls, Inc., Flowmeter Catalog, 1992.
  http://www.aalborg.com.
[36] Zucker, Robert D., Fundamentals of Gas Dynamics, Matrix Publishers, INC.
1977.
[37] 中央空調系統特輯編輯部, 小型吸收式空調系統的開發, 6月, 1990.
[38] Bodio, E. and Chorowski. M., "Joule-Thomson Microliquefiers Described
with Dimensional Analysis," Cryogenics, September, 1983, pp. 469-450.
[39] Bodio, E., Chorowski. M. and Wilczek, M., "On the Scaling Law of Throttle
Microliquefiers," Cryogenics, January, 1984, pp. 29-30.
[40] Charles E. Mortimer, Chemistry 6ed, Wadsworth Pub. CO., 1986.
[41] Owczarek, Fundamentals of Gas Dynamics, International, Library of
Congress Catalog Card, 1964.
[42] Richard J. Goldstein, Fluid Mechanics Measurement, New York, pp. 377-419,
1983.
[43] White, F. M., Fluid Mechanics 2ed, McGraw-Hill., New York, New York, 1986

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top