(44.192.112.123) 您好!臺灣時間:2021/03/06 07:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳健達
研究生(外文):Wu Chien Dar
論文名稱:高阻尼橡膠支承墊之分析模式
論文名稱(外文):A Mathematical model of High Damping Rubber Bearing
指導教授:黃震興黃震興引用關係
指導教授(外文):J.S.Hwang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:117
中文關鍵詞:高阻尼橡膠支承墊隔震器
外文關鍵詞:high damping rubber bearingisolator
相關次數:
  • 被引用被引用:5
  • 點閱點閱:324
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高阻尼橡膠支承墊 (High Damping Rubber Bearing,HDRB)為常用的基礎隔震器之一,由於組成高阻尼橡膠支承墊的材料性質複雜,使得高阻尼橡膠支承墊的力與位移關係為極複雜之非線性關係,並非一般的線性分析模式所能準確模擬。因此,本研究將提出一套適用於高阻尼橡膠支承墊的分析模式,利用此分析模式來模擬高阻尼橡膠材料受各項因素影響下的力學行為。並且本研究亦將由振動台正弦波試驗及地表試驗的結果,來檢驗此分析模式對高阻尼橡膠支承墊在動態反應之預測能力。

The purpose of this study is to propose a mathematical model to describe the shear force-displacement relationship of high damping rubber bearings(HDRB).Cyclic loading tests of ASTM D2231 specimens are conducted under various maximum shear strains, frequencies and ambient temperatures. The mathematical model is verified by analytical correlations with these experimental results. Besides, the model is validated by comparing the analytical results with those measured during shaking table tests of an isolated rigid block.

第一章 緒論
1.1 研究背景與目的1
1.2 研究重點與內容3
第二章 分析模式的建立與定義
2.1 前言4
2.2 分析模式介紹4
2.2.1 等效線性分析模式4
2.2.2 分數凱文分析模式6
2.2.3 分數麥斯威爾分析模式9
2.2.4 Pan and Yang分析模式11
2.2.5 Jankowski分析模式12
2.2.6 Kikuchi and Aiken分析模式13
2.3 影響高阻尼橡膠材料機械特性的因素15
2.3.1 最大剪力應變效應的影響15
2.3.2 頻率效應的影響16
2.3.3 溫度效應的影響16
2.3.4 軸向力效應的影響16
2.3.5 Mullins 效應的影響19
2.4 分析模式的建立20
2.4.1 分析模式建立過程20
2.4.2 能量觀念21
2.4.3 分析模式中參數的簡介23
第三章 試體試驗與預測結果
3.1 ASTM D2231 試驗25
3.1.1 試驗試體與試驗設備25
3.1.2 試驗步驟與資料收集系統25
3.2 試驗計畫(Test Program)26
3.3 試驗結果與預測27
3.3.1 Scagging現象及連續拉伸試驗預測27
3.3.2 同應變連續三圈拉伸試驗之預測30
3.4 溫度及頻率對分析模式參數的影響31
第四章 振動台試驗結果預測
4.1 前言33
4.2 振動台試驗說明33
4.3動力反覆載重試驗結果之預測34
4.4 隔震橋面版振動台試驗分析34
4.4.1 分析模式構建34
4.4.2 實驗結果之預測37
4.4.3 討論39
第五章 結論與建議
5.1 結論40
5.2 建議41
參考文獻42

1. ?年嘉義瑞里地震專刊"第十三卷,第三期,結構工程 51,中華民國結構工程學會,民國八十七年九月。
2. CSMIP Strong-Motion Records from the Northridge, California Earthquake of January 17, 1994. California Department of Conservative, Division of Mines and Geology, Office of Strong Motion Studies, Report OSMS 94 -07, 1994.
3. Seismic Isolation Update. Dynamic Isolation System, Inc., Berkeley, California, 1995.
4. Force Control Bearings for Bridges. Dynamic Isolation System, Inc., Berkeley, California, 1990.
5. Kelly, J.M., "Dynamic and Failure Characteristics of Bridgestone Isolation Bridges", EERC Report No. 91/04, Earthquake Engineering Research Center, University of Berkeley, 1991.
6. Friction Pendulum Seismic Isolation Bearings. Earthquake Protection Systems, Inc., San Francisco, California, 1993.
7. 黃震興、古盛文,"隔震橋樑之振動台試驗與理論分析(II)- 使用高阻尼橡膠支承墊之隔震橋面版振動台試驗" ,國科會專題研究計畫報告,NSC-85-2621-P-011-001,台北(1996)。
8. Guide Specifications for Seismic Isolation Design, American Association of State Highway and Transportation Officials,Washington,D.C.,1991
9. Manual for Menshin Design of Highway Bridges. Public Work research Institute, Tsukuba City,Japan,1992.(in Japanese).
10. 黃震興、王震中,"隔震橋樑之振動台試驗與理論分析(Ⅲ)-第一部份:高阻尼橡膠支承墊之動力特性與分數微分模型" ,國科會專題研究計畫報告,NSC-86-2621-P-011-003,台北,民國八十六年八月(1997)。
11. J.S.Hwang and S.W.Ku"Analytical Modeling of High Damping Rubber Bearing",Journal of Structural Engineering,ASCE.Vol.123,No.8,pp.1029-1036.1997
12. J.S.Hwang and J.C.Wang "Seismic Response Prediction of HDR Bearings Using Fractional Derivative Maxwell Model ",Engineering Structures,Vol.20,No.9,pp.849-856,1998
13. Tso-Chien Pan and Guichang Yang, "Nonlinear Analysis of Base-isolation MDOF Structures", Eleventh World Conference on Earthquake Engineering, paper no.1534.(1996).
14. Robert Jankowski, Krzysztof Wilde and Yozo Fujino, "Pounding of Superstructure Segments in Isolated Elevated Bridge During Earthquakes", Earthquake Engineering and Structural Dynamics, Vol.27,487-02(1998).
15. Masaru Kikuchi and Ian D.Aiken, "An Analytical Hysteresis Model for Elastomeric Seismic Isolation Bearings", Earthquake Engineering and Structural Dynamics, Vol.26.215-231(1997)
16. Osamu Nakano, Hiroaki Nishi, Tadayuki Shirono, Katuhiro Kumagai, "Temperature-Dependency of Base-Isolation Bearings".
17. R.F.Kulak and T.H.Hughes(1993).Frequency and Temperature Dependence of High Damping Elastomers,Trans.SmiRT-12,Vol.K.
18. 林錦偉,"高阻尼橡膠支承墊之動力特性研究"碩士論文,台灣科技大學,(1998)
19. Conversy,F.(no title),Memoire,Anales des Ponts et Chaussies ,Vol.4,1967.
20. Holt, W.L., Rubber Chem. And Technol.,5,79(1932)
21. Mullins, L., "Softening of Rubber by Deformation." Rubber Chemistry and Technology, Vol. 42, No. 1, pp.339-362, 1969.
22. Blanchard, A.F., "Breakage of Rubber-Filler Linkages and Energy Dissipation in Stressed Rubber, "Journal of Polymer Science, Vol. 14, pp355-374, 1954.
23. Bueche, F., "Molecular Basis for the Mullins Effects", Journal of Applied Polymer Science, Vol. 4, No 10, pp.107-114. , 1960.
24. Kraus, G., Childers, C.W. and Rollman. K.W.," Stress Softening in Carbon Black-Reinforced Vulcanizates, Strain Rate and Temperature Effects," Journal of Applied Polymer Science, Vol. 10, No 2, pp.229-244., 1966.
25. Harwood, J.A.C., Mullins,L. and Payne, A.R., "Stress Softening in natural Rubber Vulcanizates. Part II. Stress Softening Effects in Pure Gum and Filler Loaded Rubbers, "Journal of Applied Polymer Science, Vol. 9, No 9, pp.3011-3021., 1966.
26. "Code for the Use of Rubber Bearings for Rail Bridges", UIC Code 772R,1973

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔