(3.237.178.91) 您好!臺灣時間:2021/03/04 09:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:薛艾釧
研究生(外文):AI CHUAN HSUEH
論文名稱:SiliconeRubber/Polyurethane/Epoxy摻合物高次結構、相容性及防振性之研究
論文名稱(外文):A Study on the IPN,Miscibility and Anti-Vibration Performance of Silicone Rubber/Polyurethane/Epoxy Blends
指導教授:邱顯堂
指導教授(外文):HSIEN TANG CHIU
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:纖維及高分子工程研究所
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:136
中文關鍵詞:矽橡膠聚胺酯還氧樹脂防振性
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要探討矽橡膠、聚氨酯與環氧樹脂在不同摻合比率下,摻合膠的硬化溫度及反應結構,做一系列之探討。實驗結果顯示,摻合膠在不同比例時,其硬化溫度會隨著環氧樹脂含量的增加而提高,硬化過程所需的熱能會隨著環氧樹脂的增加而增加;在結構的分析上,隨著摻合膠比例不同,各官能基之吸收峰也會產生改變,可知摻合膠之間具有相互作用。
在不同摻合比率下之物理性質及剛性力學特性。實驗結果顯示,由於聚氨酯的彈性佳、環氧樹脂的剛性大,抗張強伸度及楊氏系數與撕裂強度隨摻合比的改變成比例關係,伸長隨著聚氨酯的增加而增加,且抗張強度隨著環氧樹脂的增加而上升,同時在摻合比為SPE721時可視為一臨界現象。另外矽橡膠的硬度介於聚氨酯與環氧樹脂間,以至其硬度隨聚氨酯與環氧樹脂摻合比增加而呈現比例關係,在摻合比為SPE721同時也出現臨界點;密度也呈現相同的結果。
由使用壽命及剛性力學特性得知,聚氨酯為彈性物質由彈性因子主導,而環氧樹脂為剛性物質,因此隨著聚氨酯與環氧樹脂摻合比的改變,可降低了摻合膠之永久變形量並提高彈性回復率達到接近純矽橡膠的性質。就剛性力學特性而言,可得知硬度與剛性力學特性成比例關係,且隨環氧樹脂摻合比增加,而提高了摻合膠之剛性力學特性。
利用動態力學分析探討矽橡膠、聚氨酯與環氧樹脂在不同摻合比時,摻合膠之網目結構與相容性之關係。由不同頻率之動態力學分析(Dynamic Mechanical Analysis;簡稱DMA)得知,系統出現兩個阻尼特性峰,顯示摻合膠具有部分互容性;由電子顯微鏡可知,摻合膠之斷面型態呈現微小顆粒分散在摻合膠中,且隨摻合膠中環氧樹脂比例提高而漸變為粗造,即可知摻合膠具有分子網目與網目間及分子自身交聯的網目高分子互穿結構(Interpenetrating Polymer Networks;簡稱IPN)
在不同摻合比時之動態力學、遲滯效應、防振性能及制振性能。實驗結果顯示,由動態力學分析、壓縮及剪切振動遲滯效應得知,添加環氧樹脂後制振性較佳,且隨摻合比的增加,提高了摻合膠之制振性能。由振動傳達率評估得知,隨著環氧樹脂含量的添佳制振性能較優,因此藉由摻合,在防振及制振上得到互補作用。

A series of discussions on silicone rubber, polyurethane and epoxy blends in various ratio for blends structure and reaction in hardened are proposed in this study.The experimental results show that the blends hardened temperature will rise with ncspect to the epoxy content. During the hardening procedure, we found that the head energy would rise with the epoxy content; And in the analysis of structure, would change with various ratio in blends blending, it infers there exists interacted affections between blends products.
In this study, we discuss physical and mechanics properties of liquid silicone rubber, polyurethane and epoxy with various blending ratios. The experimental results show that tensile strength, Young’s modulus and tear strength have proportion relationships with the blending ratios. That is because Polyurethane has better elasticity and epoxy has better rigidness. In addition tensile length increase with the polyurethane content and epoxy content, and has a critical phenomenon at SPE721 blending ratio. Products density have the same phenomenon.. Because the hardness of silicone rubber is between polyurethane and epoxy, so that it shows a proportional relationship with polyurethane and epoxy blending ratios.From blends mechanical property as life and stiffness, we can get that polyurethane is a elastic product basing on the elastic factor and epoxy is a stiffness product. The permanent deformation decreases and the elastic recovery percentage increases with the polyurethane and epoxy blends ratio change. On stiffness, we get hardness has a proportional relationship with stiffness. And with increasing epoxy blend ratio the stiffness will increase too.
In this study, we discuss silicone rubber. Polyurethane and epoxy with various blend ratios by dynamic mechanical analysis on IPN and complementary relation.On Dynamic Mechanical Analysis, there are two damping peak and blends which are partly miscibility at various frequency. From an electron microscope, we found that blend cross-section has micro pellet distribution and rough with increasing content on epoxy. Finally, we get that blends can be formed between intermolecular and self-crosslinking in interpenetrating polymer networks.
In this study, we discuss liquid silicone rubber, polyurethane and epoxy in dynamic mechanical, sluggish effectiveness, anti-vibration and isolated vibration with various blend ratios.The experimental results show that anti-vibration is better by adding content on epoxy, and increase blend ratio can rise blends anti-vibration performance in dynamic mechanical analysis, compression and sluggish effectiveness in shear stress.Estimate on the vibration transmit yield that anti-vibration is better with content on epoxy increase, and anti-vibration and isolated vibration are complementary by blending.

第一章 緒論1
一、前言1
二、研究背景3
2.1矽橡膠3
1.矽橡膠的歷史3
2.特性5
3.製作方式7
4.液態橡膠的使用9
2.2聚氨基甲酸乙酯10
1.簡介10
2.發展12
3.製造方式13
2.3環氧樹酯14
1.簡介14
2.發展15
3.製造方式16
三、聚摻合17
四、防震材料結構分類20
五、橡膠振動阻抗原理24
六、研究特徵及目的28
七、研究架構29
八、參考文獻31
第二章34
摘 要35
Abstract36
一、前言37
二、實驗38
2.1混摻及試片製作39
2.2硬化反應之測定40
2.3摻合膠硬化結構之分析40
三、結果與討論41
3.1摻合膠之硬化反應41
3.2 摻合膠之硬化結構分析43
四、結論48
五、參考文獻49
第三章50
摘 要51
Abstract52
一、前言53
二、實驗55
2.1混摻及試片製作56
2.2摻合膠之物理機械性質測試57
2.3壓縮永久變形試驗(Compression set) 57
2.4剛性率測定57
三、結果與討論60
3.1 摻合膠之基本物性分析60
3.2 摻合膠之長期力學行為分析62
3.3 摻合膠之剛性力學特性分析70
四、結論78
五、參考文獻79
第四章81
摘 要82
Abstract83
一、前言84
二、實驗86
2.1混摻及試片製作87
2.2 摻合膠之動態機械性質分析88
2.4摻合膠之斷面型態分析89
三、結果與討論90
3.1摻合膠動態力學及相容性分析90
3.2摻合膠之形態學分析96
四、結論98
五、參考文獻99
第五章100
摘 要101
Abstract102
一、前言103
二、實驗105
2.1混摻及試片製作106
2.2動態力學分析107
2.3剪切遲滯現象之測定107
2.4傳輸率測定110
三、結果與討論111
3.1 摻合膠動態力學分析111
3.2摻合膠之遲滯效應116
3.3 摻合膠之制振效應125
3.4摻合膠之防振及制振特性129
四、結論133
五、 參考文獻134
第六章 總結論

1.James E. Mark , Burak Erman and Fredrick and Fredrick R. Eirich , Science and Technology of Rubber P.545 (1994)
2. M. Ebelmen, Ann. Chem. Ann. Chem. 52 332 (1844)
3.C.Friedel, A.. Laddenburg, Ann Chem.127 31 (1871)
4.D.I. Mendeleev, “The principlesof Chemistry”,London,(1891)
5.W.Noll,”Chemistry and Technology of siloxanes”,Acedemic Press,New York,P.18(1968)
6.C.Eaborn, “Organosilicone compound”,Butter Worths scientific plublication . londom, P100 (1962)
7.P.R.Dvornic, R.W.Lenz,”High Temperature Siloxane Elastomer”,Basel,Heidlberg,New York,Huthig u. Wepf P.20 (1990)
8.K.E. Polmanteer,”Current Perspectives on Silicone Rubber Technology”Rubber Chemistry and Technology V. P1051~108054 (1981)
9.E.L.Warrick,”Forty Year of First”,McGraw-Hill, Publishing Corp. P34(1990)
10.W.Noll, ”Chemistry and Technology of siloxanes”,Acedemic Press,New York P7 (1968)
11.K.Pohmer,G.Schmidt,H.Steinberger,Leverkusen/Germany,T.Bruendl,Marchtrenkl/Austria and T.Schmidt,Muhlheim/Ruhr/Germany “Liquid Silicone Rubber”,Translated from Kunststoffe P.1396-1398 87 (1997) 10
12.A.K.Sha’aban,et al. Polym.Prepr.24(2),P130(1983)
13.O.Gunter ed.”Polyurethane Handbook”,Hanser Publisher,New York,1985
14.M. Van Beylen, M. Bolke, S. Bywater, E. Franta, P. Hallpap, J-E Hertz, G. Heublein, J. E.McGrath, P. Rempp, S. Smet, M. Szwarz, D.J. Worsfold, I. Yiglor, adv.in Polym.sci.,P1 (1988)
15.L.H.Spreling in”Sound and Vibration Damping with Polymers”ed. By R. D. Corsaro and L.H.Sperling,ACS symposium series 624P.5(1990)
16.陳原振,”聚氨酯系阻尼材料之研究”,台灣大學化學工程所博士論文,P,1-16,民國八十五年六月
17.Robert F.Steidel , Jr. “An Introduction to Mechanical Vibrations”, Third edition , pp177-178(1989).
18.J. Harris and A. Stevenson , Rubb. Chem. Technol. Vol.59 , n5 , pp740-764(1986).
19.熱分析的簡介與DSC的原理與應用 張聖潔 塑膠資訊 1996. 7. No.6 P11~22
20.F.Braun,L.Willner, M.Hess, R. Kosfeld, J of Organomet. Chem.,332 P63(1987)
21.A.L.Smith, “Analytical Chemistry of Silicones”,John
22. C.Eaborn, “Organosilicone compound”,Butter Worths scientific plublication . londom, P100 (1962)
23. 何蒼峰,“官能性有機矽氧高分子之合成鑑定與應用”,台彎大學化學研究所博士論文,P.5中華民國八十六年六月
24. A.K.Sha’aban,et al. Polym.Prepr.24(2),P130(1983)
25.K.D. Ziegel , Rubber Chem. Technol. , Vol.49 , n2 , p393(1976).
26.L.M.Robeson , Polym. Eng. Sci. , Vol.24 , p587(1984).
27. L.S.Proter and E.A.Meinecke , Rubber Chem. Technol. , Vol.53 , no.5 , p1133 (1980).
28. Robert W.Layer and Robert P.Lattimer , Rubber Chem. Technol. , Vol.63 , no.3 , p426 (1990).
29.J.A.Brydsom”Rubber Materials and their Compounds”,P23-24(1988)
30.Dr Aemi bin Samsuri , International Rubber Conference Beijing , China , 13-15 , Oct. , p199(1992).
31.L.S.Proter and E.A.Meinecke , Rubber Chem. Technol. , Vol.53 , no.5 , p1133 (1980).
32.British Standards Institution , “Draft British Standard BS-5400:Steel , Concrete and Composite Bridges :Part9A:Code of Practice for Design of Bearings and Part9B:Specification for Materials , Manufacture and Installation of Bearings” , Document 81/10/14 (1981).
33. A. Utracki,”Economics of Polymer Blends”,Polym. Eng. And sci. Vol.22 No.17 P1166 (1982)
34.Takayuki Murayama , “Dynamic Mechanical Analysis of
Polymeric Material” , Materials Science Monographs , pp89-93(1978).
35.L.H.SPErling , “Interpenetrating Polymer Networks and Related Materials” , pp6-8(1981).
36. Takayuki Murayama , “Dynamic Mechanical Analysis of Polymeric Material” , Materials Science Monographs , pp89-93(1978).
37. R.J. Perez, “Eopxy Resin Technology”,P.S. Bruins,Ed. Interscience,New York,45(1968)
38.Lawrence E.Nielsen , “Mechanical Properties of Polymer and Composites“ , Vol.1 , pp175-181(1975).
39. J.Harris and A.Stevenson , Rubber Chem. Technol. , Vol.59 , no.5 , p740(1986).
40.James M.Kelly and Edgardo Quiroz , “Mechanical Characteristics of Neoprene Isolation Bearings” , pp1-4 (1992).
41.Dr.C. Metherell , Progress in Rubber and Plastics Technology , Vol.9 , n.3 , pp237-251(1993).
42. Singiresu S. Rao , “Mechanical Vibration“ Second Edition , pp102-105(1990)
43.Robert F.Steidel , Jr. “An Introduction to Mechanical Vibrations” Third Edition , pp43-44(1989).
44.A.R.Payne , Rubber Chem. Technol. , Vol.37 , no.5 , p1190-1244(1964).
45.F.C.Nelson , The Shock and Vibration Digest.Vol.26 , no.1 , pp24-28(1995).
46.L.H.Sperling “Introduction to Physical Polymer Science”Second Edition P368-370(1992)
47.Singiresu S. Rao ,”Mechanical Vibration “Second Edition P102-105(1990)
48.A.R.Payne,Rubber Chem. Technol.,Vol.37 , No.5 P1190-1244(1964)
49.F.C.Nelson,The Shock and Vibration Digest.Vol.26,No.1 P24-28(1995)
12.A.R.Payane, Rubber Chem. Technol, ,Vol.37 ,No.5,P1190-

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔