跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳美瓊
研究生(外文):Mei-Chiung Chen
論文名稱:聚(乙烯醇-苯乙烯磺鈉)水膠之黏彈行為與界面熱力學
論文名稱(外文):Viscoelastic Behavior and Interfacial Thermodynamics of Poly(vinyl alcohol-g-sodium styrenesulfonate)[PVA-g-SSS] Hydrogels
指導教授:胡孝光胡孝光引用關係
指導教授(外文):David Shiaw-Guang Hu
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:纖維及高分子工程研究所
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:84
中文關鍵詞:交聯密度Flory-Huggins交互作用參數Slip-link模型界面張力聚乙烯醇聚酯水膠
外文關鍵詞:crosslink densityFlory-Huggins interaction parameterslip-link modelinterfacial tensionpoly(vinyl-aclohol)polyesterhydrogel
相關次數:
  • 被引用被引用:2
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要(第一部份)
本研究以聚乙烯醇(Poly(vinyl-alcohol),PVA)與苯乙烯磺酸鈉(sodium styrenesulfonate,SSS)接枝共聚合,由其膨潤與拉伸實驗來探討溫度與離子成份對水膠膨潤熱力學與黏彈行為的影響。首先,由紫外光-可見光(UV-Vis)光譜儀數據,得知其接枝率的範圍從0.102wt%∼0.454wt%。由平衡含水率的實驗結果發現,PVA水膠平衡含水率隨著溫度與接枝率的增加而增加。由拉伸實驗可得到平衡膨潤水膠之彈性模數(modulus)、交聯密度(crosslink density)υe及Flory-Huggins交互作用參數χ,結果發現χ與χS值隨著溫度與接枝率的增加而遞減,而焓貢獻的χh隨著溫度的增加而逐漸的遞減,隨接枝率的增加而增加。由χh與χS求得水膠膨潤過程中水的部份莫耳混合焓與部份莫耳混合熵隨著溫度的增加而下降。根據slip-link模型計算水膠的化學交聯密度(NC)與物理交聯密度(NS),發現NS隨著溫度與接枝率的增加而遞減,且PVA-g-SSS水膠之NS從低溫的正值隨著溫度的增加而變為負值,顯示隨溫度增加水膠含水量增加使水膠網路產生解纏(disentanglement)效果,降低網路的自由能。當NS=0時水膠符合理想彈性體,因此可推測PVA-g-SSS水膠為理想彈性體的溫度,結果發現水膠成為理想彈性體的溫度大致隨著接枝率的增加而下降。經計算,PVA-g-SSS水膠網路中的化學交聯密度大於離子密度,PVA水膠的膨潤率隨著離子密度與化學交聯密度之比值的增加而上升。
摘要(第二部份)
本研究以聚乙烯醇(Poly(vinyl-alcohol),PVA)與苯乙烯磺酸鈉(sodium styrenesulfonate ; SSS)接枝共聚合,將聚氧化乙烯對苯二甲酸poly(ethylene terephthalate)(PET)與含有磺酸鈉的聚氧化乙烯對苯二甲酸(Sulphonate Sodium-containing PET,分子量≒20000)(PETSS)混摻,由膨潤與接觸角實驗來探討離子成份對其界面能量的影響。從平衡膨潤實驗發現PETSS/PET的混摻物與PVA水膠之平衡含水率均隨著離子基團的增加而增加。由接觸角實驗,得知PETSS/PET混摻物及PVA水膠與空氣氣泡、正辛烷液滴之接觸角隨著離子成份的增加而下降。由所求得的接觸角利用Andrade等人方法即可求得PETSS/PET混摻物與PVA系水膠之分散表面自由能(γdSV)、極性表面自由能(γPSV)、表面自由能(γSV)及其與水的界面自由能(γSW),結果發現離子成份愈多,表面自由能增加,高分子-水的界面自由能下降,高分子-水間的界面作用能(ISW)增加。吸水量高的PVA系水膠之表面自由能大於PETSS/PET混摻物之表面自由能;其與水之界面自由能則小於PETSS/PET混摻物與水的界面自由能,對應地PVA系水膠-水間的界面作用能大於PETSS/PET混摻物-水的界面作用能。

Abstract (Part I)
PVA[Poly(vinyl-aclohol)] was grafting-copolymerized with SSS(sodium styrenesulfonate) and ammonium cerium(IV) sulfate at 60℃. The SSS content of various copolymers were analyzed with UV-VIS spectroscopy. The water content in hydrogels increases with SSS grafting. The tensile measurements result in the elastic modulus of gels at various temperatures, which yields the crosslink density of hydrogels and Flory-Huggins interaction parameters (χ). Theχparameters decreases with temperature and grafting ratio, and the enthalpic component(χh) decreases with temperatures. The entropic component(χS) decreases with temperature and grafting ratio. The partial molar energy of mixing of water phase decreases with temperatures and grafting ratio. The slip-link model indicates that number of slip-link(or physical entanglement) decreases with temperature and grafting ratio. It is concluded that higher temperature and grafting ratio causes the higher water content, and signifcant disentanglement due to water swelling. The gels are ideal elastomer when the number of slip-link equate zero. It is found that the temperatures at which PVA-g-SSS gels are ideal elastomer decrease with grafting ratio. The swelling ratio of hydrogels increases with the ratio of SSS grafting and crosslink of density due to hydroxyl reactions.
Abstract (Part II)
An investigation on the influence of ionic contents on interfacial energy was caried out. PVA[Poly(vinyl-aclohol)] grafting-copolymerized with SSS(sodium styrenesulfonate) and ammonium cerium(IV) sulfate at 60℃, as well as PET[poly(ethylene terephalate)] mixture with PETSS(sulphonate sodium-containing PET) were used. The sodium contents of PETSS were analyzed with atomic absorption spectroscopy. The water content of hydrogels and polymer blends increases with ionic sontent. The contact angle of air and n-octane on hydrogels and polymer blends in water at 25℃ were measured. which yield the surface energy of samples(γsv), the dispersion component of surface energy(γdsv), the polar component of surface energy (γpsv) and the water-polymer interfacial energy (γsw). The result imply that the surface energy and the water-polymer interfacial interaction energy (Isw) increases with water content, as well as the water-polymer interfacial energy decreases with water content. Also, the water-gels interfacial energy is corr with Flory-Huggins interactions of polymer-water with fluctuations theory of interface.

摘要(第一部份)I
英文摘要(第一部份)II
摘要(第二部份)III
英文摘要(第二部份)IV
誌謝V
目錄VI
圖表索引IX
第一部份:聚(乙烯醇-苯乙烯磺鈉)水膠之膨潤熱力學與黏彈行為
一、前言1
二、實驗方法5
2-1 材料的製備5
2-1-1 PVA-g-SSS接枝水膠共聚物之製備5
2-1-2 PHEMA水膠之製備5
2-2膠化成形6
2-3水膠接枝率分析6
2-3-1檢量曲線之標定6
2-3-2接枝率測定6
2-4平衡膨潤測定6
2-5膨潤水膠在不同溫度下之彈性模數測定7
三、結果與討論8
3-1水膠成份分析8
3-2網路結構與成份的關係8
3-3水膠熱力學18
3-3-1溫度對水膠膨潤的影響18
3-3-2 Flory-Huggins交互作用參數18
3-3-3水-高分子混合的熱力學參數26
3-4 水膠黏彈性-SLIP LINK模型37
四、結論52
參考文獻53
第二部份:離子型水膠與聚酯之界面能-熱力學交互作用的關係
一、前言56
二、實驗方法58
2-1 材料58
2-1-1 PVA-g-SSS接枝水膠共聚物之製備58
2-1-2 PETSS/PET之混摻物58
2-2薄膜成形58
2-2-1 PETSS/PET薄膜之製作58
2-3 PETSS之鈉含量的測試58
2-4平衡膨潤測定59
2-5接觸角之量測與表面能量之計算59
三、結果與討論61
3-1成份分析61
3-2成份對含水率的影響61
3-3成份對表面能量及界面能量的影響61
3-4 界面張力熱力學74
3-4-1以P.G. de Gennes理論解釋74
3-4-2 以非古典流體界面漲落來解釋78
四、結論82
參考文獻83

參考文獻(第一部份)
1. J.-M. Guenet, "Thermoreversible Gelation of Polymers and Biopolymer", Academic Press, New York, (1992).
2. O. Wichterle and D. Lim, Nature, 185, 117-118(1960).
3. S. M. Aharoni, Synthesis,"Characterization and Theory of Polymers Network and Gels", Plenum Press: New York, NY., (1992).
4. D. DeRossi, K. Kajiwara, Y. Osada, and A. Yamauchi ," Polymer Gels: Fundamentals and Biomedical Applications", Plenum Press: New York, NY., (1991).
5. R. A. Siegel,"Pulsed and Self-Regulated Drug Delivery",CRC Press, Ed. by J. Kost, Boca Raton, FL., Chapter 8,(1990).
6. H. Feil, H.Y. Bae, J. Feijen and S.W. Kim, Journal of Membrane Science, Vol. 64, pp. 283-294(1991).
7. D. De Rossi, M. Suzuki, Y. Osada and P. Morasso, J Intell. Mater. Syst. Struct., Vol. 3, pp.75-95(1992).
8. H.H. Hooper, S. Goto, K. Otake and S. Saito, Macromolecules, Vol. 23, pp. 1096-1104(1990).
9. Y. Hu, K. Horie, H. Ushiki, T. Yamashita and F. Tsunomori, Macromolecules, Vol. 26, pp.1761-1766(1993).
10. A Suzuki, "Proceedings of the Frist International Conference on Intelligent Materials", Technomic Publishing Co., Inc ., Lanaster, PA, pp. 297-300(1993).
11. K. K. Lee, E.L. Cussler, M. Marchetti and M. A. McHugh, Chem. Eng. Sci., Vol. 45, pp. 766-767(1990).
12. T. Takagi, K. Takahashi, M. Aizawa and S. Miyata , "Proceedings of the First International Conference on Intelligent Materials", Technomic Publishing Co., Inc.: Lanaster, PA, (1993).
13. T. Tanaka, Sci. Amer., Vol. 244,pp. 124-138(1981).
14. G.H. Hsiue, Y.S. Yang and J.F. Kuo, J. Appl. Polym. Sci., Vol. 34, pp. 2187(1987).
15. B.N. Misra, J. Kishore, M. Kanthwal and I.K. Mehta, J. Polym. Sci., Part A, Vol. 24, pp. 2209(1986).
16. W.Y. Chiang and C.M. Hu, J. Appl. Polym. Sci., Vol. 30, pp. 3895(1985).
17. W.Y. Chiang, and C.M. Hu, J. Appl. Polym. Sci., Vol. 36, pp. 1497(1988).
18. T. Nonaka, T. Ogata and S. Kurihara, J. Appl. Polym. Sci., Vol. 52, pp. 951(1994).
19. F.J. Liou, G.C.C. Niu and Y.J. Wang, J. Appl. Polym. Sci., Vol. 46, pp. 1967(1992).
20. P.J. Flory,〝Principle of Polymer Chemistry〞, Cornell University Press, Ithaca,492(1953).
21. J. Hasa, M. Ilavsky, and K. Dusek., J. Polym. Sci. Polym. Phys.,13,253(1975).
22. J. Hasa, M. Ilavsky and K. Dusek, J. Polym. Sci. Polym. Phys., Vol. 13, pp. 263(1975).
23. M.B. Huglin and J.M. Rego, Polymer, Vol. 32, pp. 3354 (1991).
24. P.Y. Yeh, P. Kopeckova and J. Kopecek, J. Polym. Sci. PartA: Polym. Chem., Vol. 32, pp. 1627(1994).
25. L.H. Sperling, 〝Intruduction to Physical Polymer Science〞, Wiley,Interscience, pp. 429(1986).
26. I. Sakurada, A. Nakajima and H. Fujiwara, J. Appl. Polym.Sci., Vol. 35, pp. 479(1959).
27. K. Ulbrich, M. Ilavsky, K. Dusek and J. Kopecek, Europ. Polym. J, Vol. 13, pp. 579(1977).
28. K. Ulbrich, M. Ilavsky, K Dusek and J.Kopecek, Europ. Polym. J, Vol. 14, pp. 45(1978).
29. M.B. Huglin,M.M.A.-M. Rehab and M. B. Zakaria, Macromolecules, Vol. 19, pp. 2986(1986).
30. M.G. Brereton and P.G. Klein, Polymer , Vol. 29, pp.970 (1988).
31. I. Sakurada, A. Nakajima and K. Shibatani, Makromol. Chem, Vol. 87, pp. 103(1965).
32. T.C. Warren and W. Prins, Macromolecules , Vol.5, pp. 506 (1972).
33. N.A. Peppas and E.W. Merrill, J. Polym. Sci. Polym. Chem., Vol. 14, pp. 459(1976).
34. N.A. Peppas and E.W. Merrill,Techn. Chron., Vol. 43, pp. 559 (1974).
35. M.B. Huglin and M.M.A.-M. Rehab, Polymer,Vol. 28, pp. 2200 (1987).
36. R.C. Ball, M. Doi, S.F. Edwards and M. Warner, Polymer , Vol. 22, pp.1010(1981).
37. M.Gottlieb and R.J. Gaylord, Macromolecules,Vol.17, pp.2024 (1984)
38. P. Thirion and T. Weil, Polymer , Vol. 25, pp.609(1984).
參考文獻 (第二部份)
1. W.C. Hamilton, J. Colloid Interface Sci., Vol. 40, No. 2, pp. 219 (1972).
2. B.Y. Tamai, K. Makuuchi and M. Suzuki, J. Phys. Chem, Vol. 71, No. 13, pp. 4176(1967).
3. J.D. Andrade, R.N. King, D.E. Gregonis and D.L. Coleman, J. Polym. Sci.:Polym Symp., Vol. 66, pp. 313(1979).
4. Y. Sakurai, T. Akaike, K. Kataoke and T. Okano, in "Biomedical Polymers" , Ed. by E.P. Goldberg and A. Nakajima, Academic Press, New York, pp. 335(1980).
5. Y.C. Ko, B.D. Ratner and A.S. Hoffman, J. Colloid Interface Sci., Vol. 82, No. 1, pp. 25(1981).
6. D.T. Nguyen, Colloids and Surfaces A:Physicochem. Eng. Aspects, Vol. 116, pp.145(1996).
7. N. Yamada, T.Okano, H. Sakai, F.Karikusa, Y. Sawasaki, Y. Sakurai, Makromol.Chem.,Rapid Commun, Vol. 11, pp. 571 (1990).
8. D.S.G. Hu and C.E. Tsai, J. Appl. Polym. Sci., Vol. 59, pp. 1809 (1996).
9. M. Gheorghiu, G. Popa and O.C. Mungiu, Journal of Bioactive and Compatible Polymers, Vol. 6, pp.165(1991)
10. T. Nohuchi, M.Oka et al.,J.Appl.Biomaterials, Vol. 2, pp. 101(1991).
11. N.A. Peppas ed.,"Hydrogels in Medicine and Pharmacy",3 volumes, CRC Press, Boca Raton,Florida,(1987).
12. J.D. Andrade, L.M. Smith, D.E. Gregonis, in "Surface and Interfacial Aspects of Biomedical Polymers,Vol.1:Surface Chemistry and Physics" , Ed. by J.D. Andrade, Plenum,Press, New Youk, pp. 249(1985).
13. J.D. Andrade, R.N. King, D.E. Gregonis and D.L. Coleman, J.Polym. Sci.:Polym.Symp., Vol. 66, pp. 313(1979).
14. F.M. Fowkes, Ind.Eng.Chem., Vol. 56, pp. 40(1964).
15. P.G. de Gennes, C. R. Acad. Sci. Paris, t.307,Seris II, pp.1841-1844(1988).
16. S.K. Ma, "Modern Theory of Critical Phenomena", Benjamin/Cummings, Reading,(1976).
17. G.H. Fredrikson,"in Physic of Polymer Surfaces and Interfaces ", Ed by I.C. Scanchez., Butterworth-Heinemann Press, pp.13-14(1992).
18. B. Widom, in Phase Transitions and Critical phenomena, Ed. by C. Domb and L. Lebowitz, Academic, New York, Vol. 10(1972).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 11.李玉鈴,「台灣二氧化碳排放量之因應對策與建議」,工業簡訊,,第28卷,第一期,22~42頁,民國八十七年一月。
2. 6.汪曉元,「發光二極體產業概況」,工業材料,第138期,81-88頁,民國八十七年六月。
3. 11.李玉鈴,「台灣二氧化碳排放量之因應對策與建議」,工業簡訊,,第28卷,第一期,22~42頁,民國八十七年一月。
4. 13.莊振輝,「確定情況下資本預算之評估(下)」,主計月報,第74卷,第6期,11~24頁,民國81年12月。
5. 7.方文玲,「我國發光二極體產業未來展望」,工業材料,第138期,89-92頁,民國八十七年六月。
6. 7.方文玲,「我國發光二極體產業未來展望」,工業材料,第138期,89-92頁,民國八十七年六月。
7. 6.汪曉元,「發光二極體產業概況」,工業材料,第138期,81-88頁,民國八十七年六月。
8. 13.莊振輝,「確定情況下資本預算之評估(下)」,主計月報,第74卷,第6期,11~24頁,民國81年12月。
9. 12.莊振輝,「確定情況下資本預算之評估(上)」,主計月報,第74卷,第4期,27~41頁,民國81年10月。
10. 12.莊振輝,「確定情況下資本預算之評估(上)」,主計月報,第74卷,第4期,27~41頁,民國81年10月。
11. 5.陳澤澎,「發光二極體交通號誌燈」,工業材料,第138期,106-109頁,民國八十七年六月。
12. 5.陳澤澎,「發光二極體交通號誌燈」,工業材料,第138期,106-109頁,民國八十七年六月。
13. 4.陳澤澎,「發光二極體的發展及應用」,工業材料,第123期,74-80頁,民國八十六年三月。
14. 4.陳澤澎,「發光二極體的發展及應用」,工業材料,第123期,74-80頁,民國八十六年三月。
15. 15.曾國雄、鄧振源,「層級分析法(AHP)的內涵與應用」,中國統計學報,第29卷,第六期,5~20頁,民國七十八年六月。