(3.238.186.43) 您好!臺灣時間:2021/02/26 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥良
研究生(外文):Chen Yan-Laing
論文名稱:五種多環芳香族碳氫化合物在河底泥生物分解特性之研究
論文名稱(外文):Biodegradation of Five PAHs in River Sediment
指導教授:張碧芬張碧芬引用關係
學位類別:碩士
校院名稱:東吳大學
系所名稱:微生物學系
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:123
中文關鍵詞:底泥
外文關鍵詞:sedimentacenaphthenefluorenephenanthreneanthrancenefluoranthene
相關次數:
  • 被引用被引用:4
  • 點閱點閱:262
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究主要探討基隆河中、下游不同採樣點底泥中混合菌經phenanthrene適應後,於好氧及厭氧環境下降解五種多環芳香族碳氫化合物(acenaphthene、fluorene、phenanthrene、anthracene、fluoranthene)的能力,並比較環境因子之影響。在好氧條件下,此五種PAHs在K8河底泥之生物降解速率為anthracene(0.586 day-1)>fluoranthene(0.394 day-1)>acenaphthene(0.374 day-1)>phenanthrene(0.148 day-1)>fluorene(0.014 day-1),此五種PAHs K12河底泥之生物降解速率為anthracene(0.593 day-1)>fluoranthene(0.549 day-1)>phenanthrene(0.549 day-1)>fluorene(0.409 day-1)>acenaphthene(0.109 day-1)。K8河底泥對五種PAHs最適降解溫度在35到40℃,在20℃時降解發生較為緩慢;最適降解的pH值在偏鹼與偏酸較佳。在K12河底泥之最佳降解溫度為30到40℃,最適降解的pH值為7至9之間,當PAHs濃度為1 mg/L時有最快的降解速率。在K8與K12河底泥添加醋酸鹽、乳酸鹽、丙酮酸鹽及酵母萃取物對acenaphthene、phenanthrene之生物降解有促進的作用,而對fluorene與anthracene、fluoranthene之降解則受到些許抑制;氮源KNO3對K8河底泥降解五種PAHs有明顯促進作用,K12河底泥中添加KNO3只對acenaphthene、fluoranthene有促進作用;不含底泥皆會加速PAHs的降解。
厭氧實驗結果顯示經phenanthrene適應半年之K8河底泥,於比未經適應之河底泥分解速率有明顯的促進,此五種PAHs在K8河底泥生物降解速率為anthracene(0.0734 day-1)>acenaphthene(0.0646 day-1)>fluoranthene(0.0471 day-1)>phenanthrene(0.0266 day-1)>fluorene(0.0022 day-1)。此五種PAHs在K12河底泥之生物降解速率,沒有明顯差異(K:0.10~0.060 day-1),K8與K12河底泥於不同pH值降解速率為鹼性>酸性>中性,溫度皆以35℃降解最快。不同濃度影響下,五種PAHs在三種不同狀態下皆以0.5、1、2 mg/L有最大的降解速率,濃度在5、10 mg/L下降解速率較低。在K8與K12河底泥添加電子提供者醋酸鹽、乳酸鹽、丙酮酸鹽,電子接受者如二氧化錳、氯化鐵大部份會有促進現象。研究中不含底泥會加速降解速率,因K12採樣點為出海口,推測底泥中菌相較為豐富,對降解較為有利,整體而言K12降解速率較K8為佳。
本研究結果可知,基隆河K8與K12河底泥之混合菌經phenanthrene適應後可提高降解多環芳香族碳氫化合物的速率,本研究由最適條件的探討,可提供河底泥中含多環芳香族碳氫化合物時,利用生物法去除之可行性參考。
Abstract
In order to assess the possible bioremediation for polynuclear aromatic hydrocarbons (PAHs) contaminated sediments, acenaphthene, fluorene, phenanthrene, anthracene and fluoranthene were spiked to sediments collected from monitoring sites of middle and down stream of Ke-Lung River which located in northern part of Taiwan. The collected sediments consortia were acclimatized in laboratory with phenanthrene for 6 months before testing. The results showed the optimal conditions for PAHs biodegradation using K8 sediment were 35-40 oC and higher acidic or alkali pH under aerobic incubation. For K12 sediment(estuarine sediment), 30-40 oC and pH 7.0-9.0 were found. The rates(K) of PAHs biodegradation in K8 sediments (freshwater sediment) were observed as anthracene(0.586 day-1) > fluoranthene (0.349 day-1) > acenaphthene(0.374 day-1) > phenanthrene (0.148 day-1) > fluorene(0.014 day-1). For K12 sediment, rates(K) of PAHs showed as anthracene (0.593 day-1) > fluoranthene (0.549 day-1) > phenanthrene (0.549 day-1) > fluorene (0.409 day-1) > acenaphthene (0.109 day-1). Acetate, lactate, pyruvate or yeast extract added to incubation vials as carbon source could enhance acenaphthene and phenanthrene biodegradation, but the other PAHs were reduced. Adding nitrate as nitrogen source also enhance PAHs biodegradation for K8 sediment. However, for K12 sediment, only acenaphthene and fluoranthene showed increase biodegradation rate. The result also indicated that PAHs biodegradation rate in the control vial (liquid medium without sediment) was increased.
For anaerobic incubation, after six months acclimation K8 sediment showed much higher biodegradation rate when unacclimatized same sediment were compared. Both for K8 and K12 sediment under different pH control showed biodegradation rate in the order of alkali > acidic > neutral. The optimal temperature for biodegradation is 35 oC. The rates(K) of PAHs anaerobic biodegradation in K8 sediments were observed as anthracene (0.0743 day-1) > acenaphthene (0.0646 day-1) > fluoranthene (0.0471 day-1) > phenanthrene (0.0266 day-1) > fluorene (0.0022 day-1). However no significant difference were found for K12 sediment. The rates(K) were at range of 0.10-0.060 day-1. Comparison influence of PAHs concentration (0.5-10mg/L) on biodegradation under simulated denitrifying, sulfodogenic or methanogenic conditions, for 0.5-2 mg/L PAHs in incubation vials, K8 or K12 sediment showed higher biodegradation rate. The addition of electron donors acetate, lactate, pyruvate, or electron acceptors manganese oxide or ferric chloride to incubation vials, all enhance PAHs biodegradation.
In conclusion, K12 sediment showed higher biodegradation capacity than K8 sediment for all 5 PAHs under aerobic or anaerobic conditions in laboratory studies. All results could be used for further application of bioremediation for clean-up of PAH-contaminated sediments.
目錄
中文摘要…………………………………………………………...……..Ⅰ
英文摘要………………………..………………………………………..III
目錄…...………………………………...……….………………………..Ⅴ
表目錄…………………………………………………………………...VII
圖目錄………………………...………………….………………………..X
第一章 前言…………………………………….………………………..1
第一節 研究緣起……………………………………………...1
第二節 研究目的………………………………………….…..9
第三節 研究內容…………………………………………….10
第二章 材料方法…………………………………………….……...….13
第一節 實驗材料……………………………………….…....13
第二節 儀器設備………………………………………….…16
第三節 分析方法及條件…………………………………….17
第四節 實驗方法…………………………………………….19
第五節 降解速率的計算…………………………………….27
第三章 結果…………………………………………………………….28
第一節 實驗品管……………………………………………...28
第二節 好氧降解實驗………………………………………...29
第三節 厭氧降解實驗………………………………………...34
第四章 討論……….…………..………………………………...……...41
第五章 結論與展望.……………………………………………………47
第六章 參考文獻……………………………………………………….48
第六章 參考文獻
行政院環保署。基隆河污染源與底棲生物採樣研究調查(1997)。(EPA-86-G103-03-20)
行政院環保署。淡水河系污染整治對生物相群眾動態影響(1998 a) 。
(EPA-87-G106-03-05)
行政院環保署。淡水河水體環境分析及研究(1998 b) 。
土壤環境污染與農藥。王一雄著。1997。明文書局印行。國立編譯管主編。
周慈薇。1997。利用適應混合菌對多氯聯苯厭氧生物降解之研究。東吳大學微生物學系碩士論文。
魏興華。1998。多環芳香族碳氫化合物在土壤中生物降解影響因子之探討。東吳大學微生物學系碩士論文。
張靜淑。1999。河底泥中多環芳香族碳氫化合物菲(Phenanthrene)生物降解之探討。東吳大學微生物學系碩士論文。
Aranha, H. G., and L. G. Brown. 1981. Effect of nitrogen source on end product of naphthalene degradation. Appl. Environ. Microbiol. 42:74-78.
Aguilar, A., C. Casas, and J. M. Lema. 1995. Degradation of volatile fatty acids by differently enriched methanogenic cultures : kinetics and inhibition. Wat. Res. 29:505-509.
Bauer, J. E., and D. G. Capone. 1985. Degradation and mineralization of polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments. Appl. Environ. Microbiol. 50:81-90.
Bauer, J. E., and D. G. Capone. 1988. Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries. Appl. Environ. Microbiol. 54:1649-1655.
Carman, K. P. and J. C. Means. 1996. Response of sedimentary bacteria in a Louisiana salt marsh to contamination by diesel fuel. Aquat. Microb. Ecol. 10:231-241.
Cerniglia, C. E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351-368.
Chandra, S. D., C. H. Ward, Hughes, J. B. 1996. Biodegradation of sorbed fluorene in sediment slurrues. Harzard waste-Hazard Mater. 13:375-385.
Chang, B. V., K. T. Liao, S. Y. Yuan. 1995. Anaerobic biodegradation of 2,4,6-trichorophenol and pentachlorophenol by dichlorophenol-adapted sediment. Toxicol. Environ. Chem. 49: 33-43.
Christian, F. 1994. Degradation of pyrene at low defined oxygen concentrations by a Mycobaterium sp. Appl. Environ. Microbiol. 60:1687-1689.
Cerniglia, C. E. 1984. Microbial transformation of aromatic hydrocarbons, p. 99-128. In R. M. Atlas(ed.), Petroleum microbiology. Macmillan Publishing Co., New York.
Christensen, E. R., and X. Zhang. 1993. Sources of polycyclic aromatic hydrocarbons to lake michigan determined from sedimentary records. Environ. Sci. Technol. 27:139-146.
Christian, F 1994. Degradation of pyrene at low defined oxygen concentrations by a Mycobacterium sp. Appl. Environ. Microbiol. 60:1687-1689
Coates J. D., J Woodward, J Allen, P. Philp, and D. R. Lovley. 1997. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63:3589-3593
Dipple, A., and C. A. H. Bigger. 1991. Mechanism of action of blood-associated polycyclic aromatic hydrocarbons. Carcinogens Mutation Res. 259:263-276.
Edward, E. A., and D. G. Galic. 1994. Anaerobic degradation of toloene and o-xylene by a methanogenic consortium. Appl. Environ. Microbiol. 60:313-322.
Edwards, E. A., L. E. Willis, M. Reinhard, and D. G. Galic. 1992. Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate reducing conditions. Appl. Environ. Microbiol. 58: 794-800.
Genthner, B. R., W. Allen Price II, and P. H. Pritchard. 1989. Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl. Environ. Microbiol. 55: 1466-1471.
Gibson, D. T. 1968. Microbial degradation of PAHs by a Mycobacterium sp. Appl. Environ. Microbiol. 54:937-944.
Gibson, D. T., and V. Subramania. 1984. Microbiol degradation of aromatic hydrocarbons, p. 204-212. in D. T. Gibson (ed.), Microbiol degradation of organic compounds. Marcel Dekker. Inc., New York.
Grigoll, M., M. Casellas, J. M. Bayona, and A. M. Solanas. 1992. Isolation and characterization of a fluorene-degrading bacterium: identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 58:2910-2917.
Grifoll, M., S. A. Selifonov, C. V. Gatlin, and P. J. Chapman. 1995. Action of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Appl. Environ. Microbiol. 61:3711-3723.
Guerin, W. F., and G. E. Jones. 1988. Mineralization of PAHs by a Mycobacterium sp. Appl. Environ. Microbiol. 54:937-944.
Guerin, W. F., and S. A. Boyd. 1995. Maintenance and induction of naphthalene degradation activity in Pseudomonas putida and an Alcaligenes sp. under different culture conditions. Appl. Environ. Microbiol. 61:4061-4068.
Heitkamp, M. A., W. Franklin, and C. E. Cerniglia. 1988. Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl. Environ. Microbiol. 54:2549-2555.
Jones, K. C., J. A. Stratford., K. S. Waterhouse, and N. B. Vogt. 1989. Organic contaminants in Welsh soils: polynuclear aromatic hydrocarbons. Environ. Sci. Technol. 23:540-550.
Karhadkar, P. P., Jean-Marc Audic, G. M. Faup, and P. Khanna. 1987. Sulfide and sulfate inhibition of methanogenesis. Wat. Res. 21:1061-1066 .
Lantz, S. E., M. T. Montgomery., W. W. Schultz., P. H. Pritchard., B. J. Spargo., and J. G. Mueller. 1997. Constituents of an organic wood preservative that inhibit the fluoranthene-degrading activity of Sphingomonas paucimobilis strain EPA505. Environ. Sci. Technol. 31:3573-3580.
Malins, D. C., M. M. Krahn, D. W. Brown, L. D. Rhodes, M. S. Myers. A. B. McCain, and S. Chan. 1985. Toxic chemicals in marine sediments and biota from Mukilteo, Washington: relationships with hepatic neoplasms and other hepatic lesions in English sole (Parophrys vetulus). JNCI 74:487-494.
Matthias, K., and B. J. Maren., and B. Mahro. 1998. Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl. Environ. Microbiol. 64:359-362
McNally, D. L.and J. R. Mihelcic. and D. R. Lueking. 1999. Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions. Chemosphere. 38:1313-1321.
Michael, P. S. 1989. Seasonal biotransformation of naphthalene, PAHs, and benzo[a]pyrene in surficial estuarine sediments. Appl. Environ. Microbiol. 55:1391-1399.
Mihelcic J. R., and R. G. Luthy. 1988. Degradation of polycyclic aromatic compounds under various redox conditions in soil-water system. Appl. Environ. Microbiol. 54:1182-1187
Mohn, W. W., and J. M. Tiedje. 1992. Microbial reductive dehalogenation. Microbial. Rev. 56: 482-507.
Mueller, J. G., P. J. Chapman, and P. H. Pritchard. 1989. Action of a Fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl. Environ. Microbiol. 55:3085-3090.
Nestler, F. H. M. 1974. Characterization of wood-preserving coal-tar creosote by gas-liquid chromatography. Anal. Chem. 46:46-53.
Pavlostathis, S. G., and P. Zhuang. 1993. Reductive dech-orination of chloroalkenes in microcosms developed with a field contaminated soil. Chemosphere. 27:585-595.
Raymond, D. S., and D. C. Savage., and G. S. Sayler., 1998 Biodegradation of aromatic hydrocarbons in an extremely acidic enviroment. American Society for Microbiology. 64:4180-4187.
Rothman, N., M. C. Poirier., M. E. Baser., J. A. Hansen., C. Gentil., E. D. Bowman, and P. T. Strickland. 1990. Formation of polycyclic aromatic hydrocarbons-DNA adducts in peripheral white blood cells during consumption of charcoal-broiled beef. Carcinogenesis. 11: 1241-1243.
Susan, C. W. and K. C. Jones. 1993 Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environmental Pollution 81:229-249.
Shiaris, M. P. 1989. Seasonal biotransformation of naphthalene, PAHs, and benzo[a]pyrene in surficial estuarine sediments. Appl. Environ. Microbiol. 55:1391-1399.
Taylor, C. D. and R. S. Wolfe. 1974. Structure and methylation of coenzyme M (HSCH2CH2SO3-). J. Biol. Chem. 249: 4879-4885.
Tiehm. A. and C. Fritzsche. 1995. Utilization of soluilized and crystalline mixtures of polycyclic aromatic hydrocarbons by a Mycobacterium sp. 42:964-968.
Tsomides, H. J., J. B. Hughes, J. M. Thomas, and C. H. Ward. 1995. Effect of surfactant addition on PAHs biodegradation in sediments. Environ. Toxicol. Chem. 14:953-959.
Wild, K. C. 1995. Polycyclic aromatic hydrocarbons in united kingdom environment: a preliminary source inventory and budget. Environ. Pollut. 88:91-108.
Williams, W. A. 1994. Microbial reductive dechlorination of polychlorinated biphenyls in heat treated and bromoethane-sulfonate treated anaerobic sediment slurries. Chemosphere. 28: 2269-2284.
Zehnder, A. J. B. 1988. Biology of anaerobic microorganism. Chapter 9: acetogenesis. P417-770.
Zhang X., and L.Y. Young. 1997. Carboxylation as an initial reaction in anaerobic metabolism of naphthalene and PAHs by sulfidogenic consortia. Appl. Environ. Microbiol. 63:4759-4764.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔