[1] Chen, A., "Quality Control and Economic Design - A Comparative Study of Taguchi''s Method and SPC." Proc. Of the IASTED Int. Conf. on Reliability, Quality Control and Risk Assessment, 217-220,1992.
[2] Chen, G., and K. C. Kapur “Quality evaluation system using loss function.” International Industrial Engineering Conference Societies’ Manufacturing and Productivity Symposium Proceedings,363-368, 1989.
[3] Chiu, W.K. and G. B. Wethrill “A Simplified Scheme for the Economic Design of X-bar Charts,” Journal of Quality Technology, Vol.6, No.2, 63-69, 1974.
[4] Chiu, W. K. " The Economic Design of CUSUM Charts for Controlling Normal Means" Applied Statistics, Vol.23, No.3, 420-433, 1974.
[5] Chung, W. j., “Economically Optimal Determination of the Parameters of CUSUM Charts”, Journal of the American Statistical Association, Vol.9, No.6, 8-17,1992.
[6] Duncan, A.J." The Economic Design of X-bar Charts Used to Maintain Current Control of A Process", J. American Statistical Association, Vol.51, 228-242,1956.
[7] Duncan, A. J., “ The Economic Design of X-bar Charts When There Is a Multiplicity of Assignable of Causes”, Journal of the American Statistical Association, Vol.66, 107-121,1971.
[8] Elsayed, E. and A. Chen, “An Economic Desogn of Control Chart using Quadratic Loss Function”, International Journal of Production Research, Vol.32, 873-887, 1994.
[9] Ewan, W. D., " When and How to Use CUSUM Charts" Technometrics, Vol.5, No.1, 1-22, 1963.
[10] Gibra, I. N. “Economically Optimal Determination of the Parameters of an X-bar Control Chart”, Management Science, Vol.17, No.9, 635-646, 1971.
[11] Girshick, M.A. and H. Rubin, “A Bayes’ Approach to a Quality Control Model.” Annals of Mathematical Statistics, Vol.23, 114-125, 1952.
[12] Goel, A. L., S. C. Jain, and S. M. Wu “An Algorithm for the Determination of the Economic Deign of X-bar Charts Based on Duncan’s Model”, Journal of the American Statistocal Association, Vol.63, 304-320,1968.
[13] Goel, A. L., and S. M. Wu” Economically Optimal Design of CUSUM Charts.” Management Science, Vol.19, No.11, 1271-1282,1973.
[14] Goldsmith, P. L. and H. Whitfield. "Average Run Length in Cumulative Chart Quality Control Schemes." Technometrics, Vol.3, 11-20.1961.
[15] Jones, L. L., and K. E. Case “Economic Desogn of a Joint X-bar and R Control Chart”, AIIE Transaction, Vol.13, No.2, 182-195, 1981.
[16] Kemp, K. W. " The Average Run Length of A Cumulative Sum Chart When A V-Mask in Used." Journal of the Royal Statistical Society Series B, Vol.23, 149-153, 1961.
[17] Knappenberger, H. A. and A. H. E. Grandage, “Minimum Cost Quality Control Tests” AIIE Transactions, Vol.1, No.1, 24-32,1969.
[18] Koo, T., and L. Lin., “Economic design of X-bar Chart When Taguchi’s loss function is Consider”, Proceedings of Asian Quality Control Snposium, South Korea, 166-178, 1992.
[19] Lucas, J. M. " Combined Shewhart-Cusum Quality Control Charts" Journal of Quality Technology, 1982, 2, 14, pp.51-59.
[20] Lorenzen, T. J. and L. C. Vance, ”The Economic Design of Control Charts: A Unified Approach”, Technometrics, Vol.28, No.1, 3-10, 1986.
[21] McWillans, T. P. “Economic Control Chart Designs and the In-Control Time Distribution: A Sensitivity Study.” Journal of Quality Technology, Vol.21, 103-110,1989.
[22] Montgomery, D. C., and R. G. Heikes., ”Process Failure Mechanisms and Optimal Design of Fraction Defective Control Charts” AIIE Transactions, Vol.8,467-472, 1976.
[23] Montgomery, D. C., "The Economic Design of Control Charts : A Review and Literature Survey," Journal of Quality Technology, Vol.12, No.2, 75-87, 1980.
[24] Nelder, J. A., and R. Mead, “A Simplex Method for Funtion Minimization”, The Computer Journal, Vol.7, 308-313,1965.
[25] Nelson, L. S. ”The Shewhart Control Chart-Tests for Special Causes”, Journal of Quality Technology, Vol.16, No.4, 237-239, 1984.
[26] Olson, D. M., and L. S. Nelson, “The Nelder-Mead Simplex Procedure for Function Minimization”, Technometrics, Vol.17, 45-51, 1975.
[27] Page, E. S.," Cumulative Sum Charts," Technometrics, Vol.3, No.1, 1-9, 1961.
[28] Page, E. S., “A Modified Control Chart with Warning Limits”, Biometrika, Vol.49, 171-176, 1962.
[29] Pan, Chung-Yu, “Development of an Economically-based Asymmetric Cumulative Sum Chart With Weibull Process Failure Mechanism.”, Phd Disssertation, Oklahoma State University,1988.
[30] Plunkett, J. and B. G. Dale, “Quality Cost: A Critique of Some Economic Cost of Quality Models” International Journal of Production Reseach, Vol.26, No.11, 1713-1719, 1988.
[31] Roberts, S. W., “Control Chart Tests based on Geometric Moving Average”, Technometrics, Vol.1, No.3, 239-250, 1959.
[32] Roberts, S. W., “A Comparison of Some Control Chart Procedures”, Technometrics, Vol.8, 411-430, 1966.
[33] Shewhart, W. A. Economic Control of Quality of Manufactured Products. Princeton, N. J. Van Nostrand Reinhold Co., 1931.
[34] Tagaras, G. and H. L.Lee, “Economic Design of Control Charts with Different Control Limits for Different Assignable Causes”, Management Science, Vol.34, 1347-1366, 1988.
[35] Taguchi. G., E. A. Elsayed and T. Hsiang, “Quality Engineering in Production System.” McGraw Hill, 1989.
[36] Taylor, H, M., "The economic Design of Cumulative Sum Control Charts," Technometrics, Vol.10, No.3, 479-488, 1968.
[37] Vance, L. C.,” Average Run Lengths of Cumulative Sum Control Charts for Controlling Normal Means”, Journal of Quality Technology, Vol.18, No.3, 59-62,1986.
[38] Weiler, G. H. “The Use of Runs to Control the Mean In Quality Control”, Journal of the American Statistical Association, Vol.48, 816-825, 1953.
[39] Weindling, J. I., S. B. Littauer., and J. Tiago ge Oliverira. “Mean Action Time of the Control Chart with Warning Limits” Journal of Quality Technology, Vol.2, 79-85, 1970.
[40] Western Electric Statistical Quality Handbook. American Telephone and Telegraph Company, Chicago, III. 1956.
[41] Woodall, W. H., “The Design of CUSUM Control Charts”, Journal of Quality Technology, Vol.18, No.2, 99-102, 1986.
[42] Yang, S., “An Optimal Design of Joint and S Control Charts Using Quadratic Loss Function”, International Journal of Quality & Reliability Management, Vol.14, 948-966, 1996.
[43] 王揚,「指數加權移動平均法管制圖經濟設計之研究」,國立臺灣工業技術學院工程技術研究所碩士論文,民國81年。[44] 王宜宇,「非對稱性Cusum管制圖經濟設計 損失函數之應用」,私立東海大學工業工程研究所碩士論文,民國83年。[45] 王永言、劉文光,「利用動差法對韋氏分配二個參數點估計之應用」,品質管制月刊,第三十卷,1991。566-575。[46] 王明亮,「對稱性Cusum管制圖經濟設計之研究 多重非機遇原因」,東海大學工業工程研究所碩士論文,民國81年。[47] 江俊雄,「多重非機遇性因素下之計數值管制圖的經濟設計」,國立臺灣工業技術學院工程技術研究所碩士論文,民國80年[48] 李文明,「不合格數累積和管制圖經濟設計之研究」,國立成功大學工業管理研究所碩士論文,民國78年。[49] 吳俊義,「單位缺點數累積和管制圖經濟設計之研究」,國立成功大學工業管理研究所碩士論文,民國78年。
[50] 吳貴彬,「多非機遇原因不合格數管制圖之經濟設計」,國立成功大學工業管理研究所碩士論文,民國79年。[51] 林麗梅,「以田口氏損失函數之觀點探討平均值管制圖之經濟設計」,私立中原大學工業工程研究所碩士論文,民國81年。[52] 林全能,「動態抽樣區間X管制圖的經濟設計」,國立臺灣工業技術學院工程技術研究所碩士論文,民國81年。[53] 林盛昌,「運用變動抽樣間距方式進行Cusum管制圖經濟設計研究」,私立東海大學工業工程研究所碩士論文,民國81年。[54] 洪在萬,「當品質特性為非常態分配時?管制圖經濟設計的研究」,國立臺灣工業技術學院工程技術研究所碩士論文,民國81年。[55] 施乃萍,「損失函數在X管制圖設計上的應用」,國立政治大學統計研究所碩士論文,民國83年。[56] 黃建裕,「品質特性為非常態分佈時有警告界限之?管制圖的經濟設計研究」,國立臺灣工業技術學院工程技術研究碩士論文,民國81年。[57] 黃忠勇,「多重非機遇原因下X管制圖經濟設計解法探討」,國立臺灣工業技術學院管理技術研究所碩士論文,民國84年。[58] 梁文杰,「非對稱性Cusum管制圖經濟設計之研究 多重非機遇原因」,私立東海大學工業工程研究所碩士論文,民國84年。[59] 傅世光,「指數加權移動平均管制圖經濟設計之研究─相關性觀測值」,私立東海大學工業工程研究所碩士論文,民國84年。[60] 賀全慶,「損失函數與品質成本」,品質管制月刊,第三十卷,1991,290-294。[61] 賀全慶、張學人,「從經濟表現觀點比較數種常用的計量值管制圖」,品質管制月刊,第二十九卷,1990,498-507。[62] 曾勝滄、黃登源,「品質管制圖經濟設計研究」,行政院國家科學委員會專題研究計畫成果報告,1987。
[63] 楊正蘭,「X管制圖經濟設計研究」,國立臺灣工業技術學院工程技術研究所碩士論文,民國76年。[64] 楊素芬、鄭明芳,「兩個非機遇因素下S管制圖之經濟設計」,國立政治大學學報,第六十九期,193-212。[65] 鄭明芳,「S管制圖之經濟設計 更新理論方法」,國立政治大學統計研究所碩士論文,民國83年。[66] 鍾智慧,「Cusum管制圖經濟設計之研究」,私立東海大學企業管理研究所碩士論文,民國78年。