(34.201.11.222) 您好!臺灣時間:2021/02/25 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃律妙
研究生(外文):Lu-Miao Huang
論文名稱:鎳/儲氫合金電池中鎳極之改質
指導教授:杜景順
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:345
中文關鍵詞:鎳/儲氫合金電池鎳極添加劑交流阻抗分析實驗設計法混合物設計法
外文關鍵詞:Nickel-metal hydride batteriesNickel electrodeAdditivesAC impedanceExperimental designsMixture design
相關次數:
  • 被引用被引用:2
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討在高溫、低溫與高速充電條件下,Ca(OH)2、Mg(OH)2、MnO2與ZnO等四種鎳電極添加劑對於鎳極性質的影響與鎳電極中添加劑的最佳組成探討。首先討論每種添加劑之添加量對於鎳極的影響,接著以直交表實驗設計法討論對鎳極利用率影響顯著之添加劑,最後藉由混合物設計法,探討鎳極添加劑之最佳組成。
實驗結果發現高含量(12%)添加劑對於鎳極利用率的提升有幫助,高溫(60℃)充電下,添加Ca(OH)2對鎳極利用率之提升效果最佳。低溫(0℃)充電下,分別添加12% MnO2與12% ZnO的鎳電極其利用率最高,分別為104%與104.84%。高速(1C)充電下,添加MnO2對鎳電極其活性物利用率之添加量佔鎳極重量之8%的提升最有幫助。添加劑影響鎳利用率的主要原因有,電極之電化學性質,鎳活性物中γ-NiOOH之比例與對電性活性面積之影響。當添加劑的加入使電荷轉移阻力下降,電雙層電容增加,擴散阻抗下降,γ-NiOOH含量增加與電極活性面積增加均有助於鎳極利用率之提升。
最後同時考慮四種添加劑Ca(OH)2、Mg(OH)2、MnO2與ZnO,利用混合物設計法探討鎳電極添加劑的最佳組成,結果發現,在高溫充電條件下,添加劑組成為55.5% Ca(OH)2、6.1% Mg(OH)2、38.4% ZnO最大利用率為88.12%。在低溫條件充電下,一般放電條件(30℃,0.2C)下,添加劑組成為11.4% Ca(OH)2、33.2% Mg(OH)2、55.3% MnO2與0.1%ZnO最大利用率為102.14%。在高速充電條件下,一般放電條件下,組成為28.6% Mg(OH)2、48.3% MnO2、23.1% ZnO之最大利用率為106.28%。
The effect of additives, e.g. Ca(OH)2, Mg(OH)2, MnO2 and ZnO, on the utilization and the optimal compositions for the Ni electrode were studied in this thesis. The effect of every additive on the characteristics of Ni electrode was first discussed, then the additives evidently affecting the utilization of Ni electrode was found by Taguchi''s methods. The optimal composition of additives
was also evaluated by the mixture design method.
The experimental results indicated that the utilization of Ni electrode was promoted by a high weight fraction (12%) of additives. Compared with the other additives, Ca(OH)2 and MnO2 had the best performance on the utilization of Ni electrode for the high temperature (60℃) charge and high charging rate (1 C), respectively. The maximum utilizations of Ni electrode were obtained as
104% and 104.84%, respectively, for the low temperature (0℃) charge when 12% MnO2 and 12% ZnO was added into the Ni electrode. Using additives in the Ni electrode of Ni/MH battery, the main factors affecting the utilization of Ni electrode were the characteristics of electrode, the content of g-NiOOH and the active area of electrode. Decreasing the charge transfer and diffusion resistances and increasing the electric double layer capacity the utilization of Ni electrode increased.
The total weight fraction of additions was chose as 8%. The optimal additive compositions of 55.5% Ca(OH)2, 6.1% Mg(OH)2
and 38.4% ZnO for the high temperature (60℃) charging condition was evaluated by the mixture design method and the maximum utilization of Ni electrode was obtained as 88.12%. The optimal compositions were 11.4% Ca(OH)2, 33.2% Mg(OH)2 and 55.3% MnO2 for the low temperature (0℃) charging condition and the maximum utilization of Ni electrode was 102.14%. Finally the maximum utilization of Ni electrode was found as 106.28% for the high charging rate (1 C) and the optimal compositions were 38.6% Mg(OH)2, 48.3% MnO2 and 23.1% ZnO.
目 錄
中文摘要................................................................................................IV
英文摘要.................................................................................................V
誌謝.......................................................................................................VII
目錄......................................................................................................VIII
表目錄....................................................................................................XI
圖目錄..............................................................................................XⅤII
第一章 緒言............................................................................................1
1-1 鎳/氫合金電池的技術與發展.......................................................4
1-2 鎳/氫合金電池的工作原理...........................................................7
1-3 氫氧化鎳電極材料.........................................................................9
1-3-1 氫氧化鎳電極的置備結構特性.........................................9
1-3-2 氫氧化鎳電極的反應.........................................................13
1-3-3 鎳氫電池自放電.................................................................15
1-3-4 添加劑對氫氧化鎳電極的影響.......................................17
1-4研究動機與論文架構....................................................................21
第二章 實驗置備與程序....................................................................23
2-1 儀器..........................................................................................23
2-2 藥品..........................................................................................24
2-3 實驗置備與程序....................................................................25
2-3-1參考電極之置備與電位.....................................................25
2-3-2 氫氧化鎳電極片(正極片)的製作..............................27
2-3-3 電池之組裝.........................................................................28
2-3-4 添加劑對鎳電極之影響...................................................30
2-3-5 正極材料性質分析...........................................................32
2-3-5-1 交流阻抗分析................................................................34
2-3-5-2 XRD分析.........................................................................34
2-3-5-3 表面積及孔徑分析........................................................36
第三章 原理........................................................................................38
3-1 交流阻抗分析表..........................................................................38
3-1-1 等效電路阻抗分析..................................................................38
3-1-2阻抗圖譜分析............................................................................44
3-2 直交表實驗設計法......................................................................48
3-2-1 直交表實驗設計之原理..........................................................48
3-2-1-1 直交表之定義........................................................................48
3-2-1-2 直交表之配置原理...............................................................50
3-2-2 實驗設計法之設計流程..........................................................53
3-2-3 最適化過程...............................................................................53
3-2-4 本實驗之設計方法..................................................................57
3-3 混合物實驗設計法.....................................................................59
3-3-1 混合物實驗設計法原理.........................................................60
3-3-2 混合物實驗設計法之設計策略............................................60
3-3-3 典型多項式...............................................................................64
第四章 結果與討論 ..........................................................................68
4-1 添加劑對鎳極性質之影響........................................................68
4-1-1高溫充電下添加劑對鎳極之影響.........................................69
4-1-1-1 Ca(OH)2添加劑的影響.........................................................88
4-1-1-2 Mg(OH)2添加劑的影響.....................................................100
4-1-1-3 MnO2添加劑的影響...........................................................110
4-1-1-4 ZnO添加劑的影響...............................................................123
4-1-2 低溫充電下添加劑添加的影響...........................................132
4-1-2-1 Ca(OH)2添加劑的影響.......................................................135
4-1-2-2 Mg(OH)2添加劑的影響......................................................145
4-1-2-3 MnO2添加劑的影響............................................................156
4-1-2-4 ZnO添加劑的影響...............................................................167
4-1-3 高速充電下添加劑添加量的影響.......................................178
4-1-3-1 Ca(OH)2添加劑的影響........................................................178
4-1-3-2 Mg(OH)2添加劑的影響......................................................190
4-1-3-3 MnO2添加劑的影響............................................................199
4-1-3-4 ZnO添加劑的影響................................................................209
4-2 實驗設計法探討添加劑對鎳極利用率影響..........................221
4-2-1 高溫充電...................................................................................221
4-2-2 低溫充電...................................................................................230
4-2-3 高速充電...................................................................................236
4-3 以混合物實驗設計法探討鎳極添加劑組成之最佳化........242
4-3-1高溫充電下鎳正極添加劑之最佳組成................................244
4-3-2低溫充電下鎳正極添加劑之最佳組成................................248
4-3-3高速充電下鎳正極添加劑之最佳組成................................250
4-4綜合討論........................................................................................255
第五章 結論與建議...........................................................................261
參考文獻.............................................................................................263
附 錄.....................................................................................................268
參 考 文 獻
【1】 Bennet, P. D.; Bullock, K. R. and Fiorino, M. E., Aqueous Re-chargeable Batteries, The Electrochemical Society Interface, 1995, 4, 26-30.
【2】 Sakai, T.; Iwaki, T.; Ye, Z. and Noreus, D., Air-Metal Hydride Battery Construction and Evaluation. J. Electrochem. Soc. 1995, 142, 4040-4044.
【3】 Furukawa, N., Development and Commercialization of Nickel-Metal Hydride Secondary Batteries. J. Power Source, 1994, 51, 45-59.
【4】 陳世瑜 鎳氫化物電池的材料與技術, 工業材料, 111期, 77-85 頁, 民國85年3月。
【5】 Johnson, B. A.; Ferro, R. E.; Swain, G. M. and Tatarchuk, B. T. High Surface Area, Low-Weight Composite Nickel Fiber Electrodes. J. Power Sources, 1994, 47, 251-259.
【6】 Adzic, G.D.; Johnson, J.R.; Reilly, J. J.; McBreen, J.; Mukerjee, S.; Sridhar, M. P.; Zhang, W. and Srinivasan, S.; Cerium Content and Cycle Life of Multicomponent AB5 Hydride Electrode. J. Electrochem. Soc. 1995, 142, 3429-3433.
【7】 Sridhar Kumar, M. P.; Zhang, W.; Petrov, K.; Rostami, A. A.; Srinivasan, S.; Adzic, G. D.; Johnson, J. R.; Reilly, J. J. and Lim, H. S.; Effect of Ce, Co, and Sn Substitution on Gas Phase and Electrochemical Hydriding/Dehydriding properities of LaNi5. J. Electrochem. Soc. 1995, 142, 3424-3428.
【8】 Sakai, T.; Miyamura, H.; Kuriyama, N.; Kato, A.; Oguro, K. and Ishikawa, H.; Metal Hydride Anodes for Nickel-Hydrogen Secondary Battery. J. Electrochem. Soc. 1990, 137, 795-799.
【9】 Witham, C.; Ratnakumar, B. V.; Bowman, R. C.; Jr, Hightower, A. and Fultz, B.; Electrochemical Evaluation of LaNi5-XGex Metal Hydride Alloys. J. Electrochem. Soc. 1996, 143, L205-208.
【10】 Sakai, T.; Ishikawa, H. and Oguro, K. Effect of Microencapsulation of Hydride Storage Alloy on the Performance of Sealed Nickel-Metal Hydride Batteries. J. Electrochem. Soc. 1987, 134, 558.
【11】 Chen, J. and Zhang, Y. S.; Nickel/Metal Hydride Batteries Using Rare-earth Hydrogen Storage Alloy. J. Mater. Res. 1994, 9, 1802-1804.
【12】 Patric, L.; Philippe, B. and Stephane, S. S.; Self-Dishcharge of Sealed Nickel-Metal Hydride Batteries. J. Electrochem. Soc. 1998, 145, 844-847.
【13】 Iwasaki, K.; Ikoma, M.; Ikeyama, M.; Kawano, H. and Matsumoto, I.; Method of Making A Separator Material for A Storage Battery. U. S. Patent No. 5,213,722 (1993)
【14】 Anani, A.; Visntin, A.; Petrov, K.; Srinivasan, S.; Reilly, J. J.; Johnson, J. R. and Schwarz, R. B. Alloys for Hydrogen Storage in Nickel/Hydrogen and Nickel/Metal Hydride Batteries. J. Power Sources, 1994, 47,261-275.
【15】 Deepika, S.; Characteristics and Effects of γ-NiOOH on Cell Performance and a Method to Quantify in Nickel Electrode, J. Electrochem. Soc. 1998, 145, 116-120.
【16】 Delahaye-Vidal, A.; Portemer, F.; Beaudoin, B.; Tekaia-Elhsissen, K.; Ggenin, P. and Figlarz, M.; The Nickel Hydroxide Electrode: Structural, Textural, and Mechanistic Studies, in Nickel Hydroxide, D. A. Corrigan and A. H. Zimmerman, eds. The Electrochem. Soc., Pennington, New Tersey, 1990, Proc. Vol. 90-4, 44.
【17】 Portemer, F.; Deahaya-Vidal, A. and Figlarz, M.; Characterization of Active Material Deposited at the Nickel Hydroxide Electrode by Electrochemical Impregnation. J. Electrochem. Soc. 1992, 139, 671-678.
【18】 Delhaye-Vidal, A. and Figlarz, M.; Textural and Structural Studies on Nickel Hydroxide Electrodes.Ⅱ.Textural and Structural Studies on Nickel(Ⅱ) Hydroxide Submitted to Electrochemical Redox Cycling. J. Appl. Electrochem. 1987, 17,589-599.
【19】 Dennis, A. C. and Sandra, L.; Electrochemical and Spectroscopic Evidence on the Participation of Quadrivalent Nickel Hydroxide Redox Reaction, J. Electrochem. Soc. 1989, 136, 613-619.
【20】 Oshitani, M.; Takayama. T.; Takashima, K. and Tsuji, S.; A Study on the Swelling of a Sintered Nickel Hydroxide Electrode. J. Appl. Electrochem. 1986, 16, 403-412.
【21】 Zimmerman, A. H. and Effa, P. K.; Discharge Kinetics of the Nickel Electrode. J. Electrochem. Soc. 1984, 131, 709-712.
【22】 彭宗平 儲氫合金在鎳氫化合物電池之應用,工業材料,111期,86-107頁,民國85年3月。
【23】 Conway, B. E. and Bourgault, P. L. Can. J. Chem. 1959, 37, 292
【24】 Armstrong, R. D. and Charles, E. A.; Some Effect of Cobalt Hydroxide upon the Electrochemical Behaviour of Nickel Hydroxide Electrode. J. Power Sources ,1989, 25, 89-97.
【25】 Oshitani, M.; Yufu, H.; Takashima, K.; Tsuji. S. and Matsumaru, Y.; Development of a Pasted Nickel Electrode with High Active Material Utilization. J. Electrochem. Soc. 1989, 136, 1590-1593.
【26】 Armstrong, R. D.; Briggs, G. W. and Charles, E. A.; Some Effect of Addition of Cobalt to the Nickel Hydroxide Electrode. J. Appl. Electrochem. 1988, 18, 215-219.
【27】 Greaves, C. and Thomas, M. A.; Structural Modification and Chang of Electrochemical Activity of Nickel Hydroxide. J. Electrovhem. Soc. 1991, 138, 885-889.
【28】 Unates, M. E.; Folquer, M. E.; Viche, J. R. and Arvia, A. J.; The Influence of Foreign Cation on the Electrochemical Behaviour of the Nickel Hydroxide Electrode. J. Electrochem. Soc. 1992, 139, 2697-2704.
【29】 Arnaldo, V.; Anaba, A. and John, A.; Analysis of Active Material and Additive Distributions in a Nickel hydroxide Electrode by SEM/EDX Techniques. J. Power Source ,1994, 51, 433-443.
【30】 Lichtenberg, F. and Kleinsorgen, K.; Stability Enchancement of the CoOOH Conductive Network of Nickel Wlectrodes. J. Power Source ,1996, 62, 207-211.
【31】 Ikama, M.; Nickel Positive Electrode for Use in Alkaline Storage Battery and Nickel-Hydrogen Battery Using the same. U. S. Patent No. 5,466,543 (1995)
【32】 Ikoma, M.; Akutsu, T.; Hiramatsu, H.; Kaiya, H. and Tsuda, S.; Nickel Cathodes for Secondary Alkaline Batteries and Nickel-Hydrogen Batteries Using the same. Jpn. Patent No. JP 5-28992 (1993)
【33】 Sato, K.; Tonomura, T.; Takahashi, H.; Fujii, J. and Kanamori, A.; Nickel Cathodes Containing Calcium and their Manufacture for Batteries, Jpn. Patent No. JP 8-329943 (1996)
【34】 Ohta, Nickel Positive Electrode for Alkaline Storage Battery and Sealed Nickel-Hydrogen Storage Battery Using Nickel Positive Electrode ,U. S. Patent No. 5,451,475 (1995)
【35】 Shih, H. and Lo, T. C.; Electrochemical Impedance Spectroscopy for Battery Research and Development : Technical Report 31. Solartron, 1996.
【36】 Macdonald, J. R.; Impedance Spectroscopy, John Wiely & Sons, New York, 1987.
【37】 林世和 東海大學碩士論文:鎳/儲氫合金電池中鎳極化成程序之探討與最適化, 台灣台中, 1997。
【38】 Christopher, M. A. Brett and Ana Maria Oliveira Brett; Electrochemistry Principles, Methods, and Applications, Oxford Science Publication,Oxford, 1993.
【39】 Ross, P. J.; Taguchi Techniques for Quality Engineering,2nd ed., McGraw-Hill Book Company,New York, 1996.
【40】 Schmidt, S. R. and Launsby, R. G.; Understanding Industrial Designed Experiments, 3rd ed.; Air Academy Press, Colorado Springs,1992.
【41】 Sheffe'', H.; Experiment with Mixture. J. Roy. Statist. Soc. ,1958. B20, 334.
【42】 Sheffe'', H.; The Simplex Centroid Design for Experiments with Mixture. J. Roy. Statist. Soc. ,1963, B25, 235.
【43】 Cornell, J. A.; Experiment with Mixtures, Designs, Models, and the Analysis of Mixture Data, 2nd ed.; John Wiely & Sons,New York, 1990.
【44】 溫添進, 林世民 混合物的實驗設計, 化工, 第38卷, 第3期, 8頁, 民國80年。
【45】 Christensen, R.; Analysis of Variance, Design and Regression, Applied Statistical Method, Chapman & Hill, London,1996.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔