(3.231.29.122) 您好!臺灣時間:2021/02/26 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盛淑蕙
研究生(外文):Shu-Hui Sheng
論文名稱:極點重數無限大之開放式馬可夫等候網路
論文名稱(外文):Open Markovian Queueing Networks with Infinite Pole Multiplicity
指導教授:黎廣福黎廣福引用關係
指導教授(外文):Kwang-Fu Li
學位類別:碩士
校院名稱:東海大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
畢業學年度:87
語文別:英文
論文頁數:28
中文關鍵詞:開放式馬可夫等候網路極點重數M平均人數
外文關鍵詞:open Markovian queueing networkpole multiplicity Mmean number
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
針對一個開放式馬可夫等候網路, 若要知道該系統是否穩定,則需知道該系統之延遲時間。這種系統的延遲時間已由C. Humes, Jr., J. Ou 和P. R. Kumar 討論過, 從他們獲得的結論中我們瞭解在開放式馬可夫等候網路中平均人數被函數化。由線性規劃我們可以得到系統平均人數的上界和下界, 其型式為□ ,這裡□ 所代表的是系統的負載,且□ ,而M是極點重數。理論上, M之值可趨近無限大, 但是目前所有文獻中均無設計出M > 2之實例, 因此本論文中, 我們將限制條件轉換成矩陣型式和設計出一些例子使得極點重數M大於先前結果, 之後再改變限制條件並且利用給定的例子去解對應的線性規劃, 我們將發現 ”極點重數M” 之值亦大於先前的結果。

For an open Markovian queueing network, to know whether the system is stable, one needs to know the delay of the system. The delay of the system was discussed by C. Humes, Jr., J. Ou, and P. R. Kumar, we study the functional dependence of the mean number in the open Markovian queueing networks. The upper and lower bounds of mean number in the system can be obtained by linear programs, and presented as□ , where □ is the nominal load on the system, and 0 □□< 1, and M is the pole multiplicity. In this paper we transform constraints into matrix expression, and create some examples so that the pole multiplicity M is larger than the previous results. Furthermore, we vary constraints and solve the corresponding linear programs associated with the given examples, we will find the “pole multiplicity M” is also larger than the previous results.

Contents
1 Introduction ……………………………………………………………………1
2 Notations and Definitions ……………………………………………………3
3 Matrix Representation ………………………………………………………..6
4 Applications of the matrix form …………………………………………..16
5 Conclusions ………………………………………………………………….25
References ……………………………………………………………………..26

Andrew Grace, ''Optimization Toolbox,'' The MathWorks, Inc., 1990-1994.
Borse, G. J. ''Numerical Methods with MALAB,'' Lehigh
University, 1995.
Edward J. Anderson, and Peter Nash, ''Linear programming
in infinite dimensional spaces,'' John Wiley & Sons, Inc., 1987.
Gong, W. B. and J. Q. Hu, ''The Maclaurin series for the
GI/G/1 queue,'' Journal of Applied Probability, vol. 29,
pp.176-184, 1992.
Humes, C. Jr., J. Ou, and P. R. Kumar,
''The delay of open Markovian queueing networks: Uniform functional bounds, heavy traffic pole multiplicities, and Stability,''Mathmatics of operations research, vol.22. pp921-pp945, 1997.
Kumar, P. R. and Meyn, S. P. ''Stability of queueing
networks and scheduling policies,'' IEEE Transactions on Automatic Control, vol. 40, pp.251-260, February 1995.
Kumar, P. R. and Meyn, Sean ''Duality and linear programs
for stability and performace analysis of queueing Networks and scheduling policies,'' 1995.
Kumar, Sunil and Kumar, P. R. ''Performance bounds for
queueing networks and scheduling policies,'' IEEE Transactions on Automatic Control, vol. Ac-39, pp. 1600-1611, August 1994.
Lippman, S. ''Applying a new device in the optimization of exponential queueing systems,'' Operations
Research}, vol. 23, pp. 687-710, 1975.
Murty, Katta G. ''Linear programming,'' John Wiley & Sons,
Inc., 1983.
Romeijn, H. Edwin and Robert L. Smith, ''Shadow prices
in infinite dimensional linear programming,'' Mathmatics of
operations research, vol. 23, pp239-pp255, 1997.
Romeijn, H. Edwin and Robert L. Smith, and James C. Bean
''Duality in infinite dimensional linear programming,'' Mathematical programming, vol. 53, pp79-97, 1992.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔