跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮志誠
研究生(外文):Ferng,Ji-cherng
論文名稱:以基因法則為基礎之模糊PID控制器之設計
論文名稱(外文):Genetic Algorithm based Fuzzy PID controller Design
指導教授:姚立德姚立德引用關係
指導教授(外文):Yao,Leehter
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:158
中文關鍵詞:基因法則單一模糊規則學習方式混合型自調式模糊PID控制器調變因子
外文關鍵詞:Genetic Algorithmsingle fuzzy rule learning methodhybrid self tuned fuzzy PID controllerscaling factor
相關次數:
  • 被引用被引用:7
  • 點閱點閱:444
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主旨在提出一個新的模糊PID控制器設計方式,稱之為混合型自調式模糊PID控制器。本文所提出之模糊PID控制器設計的理念是源自於PD控制器能增加系統響應的速度,PI控制器能有效的改善系統的穩態響應,並且分別在模糊PD控制器及模糊PI控制器的輸出部分,各自加上調變因子的設計,以增加模糊控制器的彈性,而各自對應於模糊PD控制器及模糊PI控制器輸出所設計的調變因子之調整,係以模糊法則推論的方式產生。因此,本模糊控制器將設計四種不同之模糊規則庫,分別為模糊PD控制器、模糊PI控制器、模糊PD控制器的輸出模糊調變因子以及模糊PI控制器的輸出模糊調變因子模糊規則庫。
另外,本文亦利用基因演算法於模糊規則的自動設計,為了節省所需學習的模糊規則數,本文提出以基因演算法為基礎之單一模糊規則學習的設計方法,並利用此模糊規則學習之方式,將輸出為步階響應之受控系統的控制器所需設計的模糊規則一條接著一條的予以全部學習、建構出來。
文中將驗證本文所提出之以基因演算法為基礎之單一模糊規則學習的模糊PID控制器設計方法,明顯的改善受控系統之暫態響應,以及穩態響應,同時也證明本文所設計之模糊PID控制器性能表現,比先前在此一研究領域所提出之控制器為佳。
The theme of this thesis is to propose a new method of designing a fuzzy PID controller named the hybrid self tuned fuzzy PID controller. Since the PD controller tends to increase the speed of system response while the PI controller tends to improve the steady state response, both fuzzy PI and PD controllers are integrated with respective scaling factor in the proposed fuzzy PID controller. The respective scaling factors of both the Fuzzy PI and PD controllers are adjusted by the fuzzy inference rules. Therefore, four sets of fuzzy rules are to be designed for the fuzzy PID controller including the rules for fuzzy PI controller, fuzzy PD controller, fuzzy scaling factor of fuzzy PI controller and fuzzy scaling factor of fuzzy PD controller, respectively.
The Genetic Algorithm is applied to automatically design these fuzzy rules. In order to save the number of fuzzy rules to be learned, a genetic algorithm based single fuzzy rule learning method is proposed. The fuzzy rule is learned rule by rule based on the unit step response of the controlled system.
It will be shown that the proposed fuzzy PID controller designed by the genetic algorithm based single fuzzy rule learning method greatly improves the transient response as well as the steady state response. It also will be shown that the proposed fuzzy PID controller outperforms the controllers proposed by the research in the field.
摘要 iii
誌謝 v
目次 vi
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1研究動機及目的 1
1.2文獻探討 2
1.3內容大綱 8
第二章混合型自調式模糊PID控制器之設計與應用 9
2.1理論基礎 9
2.2控制系統流程之規劃 17
2.3模擬結果分析與比較 17
第三章 混合型自調式模糊PID控制器於恆溫恆濕控制系統之應用(一)32
3.1恆溫、恆濕控制問題分析 32
3.1.1 傳統恆溫恆濕控制方式 32
3.1.2 問題分析 33
3.2實驗系統架構介紹 34
3.3恆溫恆濕控制系統控制流程規劃 38
第四章混合型自調式模糊PID控制器於恆溫恆濕控制系統之應用(二)58
4.1數學等效近似模型 58
4.2模糊控制器設計 59
4.3控制系統程式流程規劃 60
4.4模擬結果分析 65
第五章以基因法則為基礎之模糊PID控制器之設計68
5.1問題分析與數學模型 68
5.2理論基礎 71
5.2.1基因法則 71
5.2.2單一規則學習式模糊推論72
5.3模糊控制器之規劃 75
5.3.1 基因編碼 75
5.3.2 基因演算步驟與程式流程 75
5.3.3 模糊控制系統架構 76
5.4實驗結果分析與比較 77
5.4.1模糊規則庫與歸屬函數之相關設定 77
5.4.2模擬結果分析與比較 81
第六章結論與未來發展方向 137
參考文獻 139
附錄 145
A乾溼球溫度及相對濕度轉換公式 145
B電控節流閥設定 148
C例二歸屬函數示意圖 151
授權書 157
作者簡介 158
1. L. A. Zadeh, “Fuzzy Sets,” Information and Control, 8, pp. 338-353, 1965.
2. E. H. Mamdani, “Application of Fuzzy Algorithms for Simple Dynamic Plant,” Proc. IEE, vol. 121, no. 12, pp. 1585-1588, 1974.
3. M. Sugeno, Industrial Applications of Fuzzy Control. Amsterdam, The Nether- lands: Elsevier, 1985.
4. V. Pavlica and D. Petrovacki, “An application of PID-Fuzzy hybrid controller,” Control Applications,Proceedings of the 1998 IEEE International Conference, vol. 1, pp. 629-632, 1998.
5. Galada Manish and Peng-Yung Woo. “Effeciency of Fuzzy and Adaptive Fuzzy controllers Relative to PID Controller in Temperature control,” IEEE Inter-national Symposium on Intelligent control, pp. 55-60, 1996.
6. S. Z. He, S. Tan, F. L. Xu ,and P. Z. Wang, “Fuzzy Self-Tuning of PID Controller,” Fuzzy Sets syst., vol. 56, pp. 37-46, 1993.
7. R. Palm, “Sliding mode fuzzy control,” in Proc. Fuzzy IEEE,San Die- go, CA, pp.519-526,1992.
8. C. J. Harris, C. G. Moorfe ,and M. Brown, Intelligent Control-Aspects of Fuzzy Logic and Neuro Sets., 1993.
9. C. L. Karr and E. J. Gentry, “Fuzzy control of PH Using Genetic algorithm,” IEEE Trans. Fuzzy Syst., vol. 1, pp. 46-53, Feb. 1993.
10. C. L. Chen and W. C. Chen, “Fuzzy Controller Design by Using Neural Network Techniques,” IEEE Trans. Fuzzy Syst., vol. 2, pp. 235-244, Aug. 1994.
11. A. Homaifar and E. McCormick, “Simultaneous Design of Membership Functions and rule Sets for Fuzzy controllers Using Genetic Algorithms,” IEEE Trans. Fuzzy Syst., vol. 3, pp. 129-139, May 1995.
12. C. K. Chiang, H. Y. Chung ,and J. J. Lin, “A self —learing fuzzy logic contriller using genetic algorithms with reinforcements,” IEEE Trans. Fuzzy Syst., vol. 5, pp. 460-467, Aug. 1997.
1. 謝凱清,基因法則於智慧型控制之應用,國立台北科技大學碩士學位論文,民國87年6月。
14. 林信成,穩定式自我學習之最佳化模糊控制系統設計與應用,國立台灣大學電機工程研究所,民國85年。
15. 馬建華,模糊控制器設計與應用,元智大學電機與資訊工程研究所,民國84年。
16. T. Martin and C. Kong, “Fuzzy Control of Externally Distrubed Systems,” IEEE Computer Society Press, pp. 379-379, 1993.
17. G. A. Pereira, V. K. Prabhulla Chandran, and Uma Krishnan, “Precision control of Refinery Feed-Heater Temperature Using Fuzzy Algorithm,” IEEE , pp. 859-866, 1992.
18. C. C. Hsu, S. Yamada, H. Fujikawa ,and K. Shida, “Optimization of Adative Control Rule of Dead Time System by Genetic Algorithm,” IEEE Industrial Electronics. vol. 2, pp. 771-779 , 1995.
19. D. Dirankov, H. Hellendorn ,and M. Reinfrank, “An Introduction to Fuzzy Control,” New York: Springer-Verlag,1993.
20.
21. I. H. Lin, “Design and Implementation of A PC-Based Universal Fuzzy Logic controller System,” IEEE, pp. 399-408, 1995.
22. Osamu Itoh, HiroHisa Migita ,and Akihiro Miyamoto, “A Method of Design and Adjustment of Fuzzy Control Rules Based on Operation Know-How,” IEEE pp. 492-497, 1994.
23. 林傳凱,應用模糊基底函數網路的系統辨識及控制,國立台灣大學電機工程研究所,民國85年。
24. 楊振國,控制表型模糊控制器之研究,國立成功大學工程科學研究所,民國80年。
25. K. M. Rajani and R. P. Nikhil, “A Robust Self-Tuning Scheme for PI- and PD-Type Fuzzy Controllers,” IEEE Transactions on Fuzzy Systems. vol. 7, no .1, Feb. 1999.
26. M. Maeda and S. Murakami, “A self-Tuning Fuzzy Controller,” Fuzzy Sets Syst., vol.51, pp. 29-40, 1992.
27. T. J. Procyk and E. H. Mamdani, “A Linguistic Self-Organizing Process controller,” Automatica,vol.15,no.1,pp. 53-65, 1979.S. Shao, “Fuzzy Self-Organizing Control and its Application for Dynamical systems,” Fuzzy Sets Syst., vol.26, pp. 151-164, 1988.
28. Y. Park, U. Moon ,and K. Y. Lee, “A Self-Organizing Fuzzy Logic Controller for Dynamic Systems Using a Fuzzy auto-Regressive Moving Average (FARMA) model,” IEEE Trans. Fuzzy Syst., vol. 3, pp. 75-82, Feb. 1995.
29. R. Tanscheit and E. M. Scharf, “Experiments with the use of a Rule-Based Self-Organizing Controller for Robotics Applications,” Fuzzy Sets Syst., vol. 26, pp. 195-214, 1988.
30. S. Galichet and L. Foulloy, “Fuzzy Controllers:Synthesis and Equivalences,” IEEE Trans. Fuzzy Syst., vol. 3, pp. 140-148, May 1995.
31. B. S. Moon, “Equivalence Between Fuzzy Logic Controllers and PI Controllers for Single Input Systems,” Fuzzy Sets Syst., vol. 69, pp. 105-113, 1995.
32. H. Ying, W. siler, and J.J. buckley, “Fuzzy control Theory:A Nonlinear Case,” Automatica, vol. 26, no. 3, pp. 513-520, 1990.
33. Kim Chwee Ng and Yun Li, “Design of Sophisticated Fuzzy Logic Controllers Using Genetic Algorithms,” Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, pp. 1708-1712 , 1994.
34. J. Lee, “On Methods for Improving Performance of PI-Type Fuzzy Logic controllers,” IEEE Trans. Fuzzy Syst., vol. 1, pp. 298-301, Nov. 1993.
35. F. G. Shinskey, Process Control System—Aplication,Design,and Tuning. New York: McGraw—Hill, 1998.
36. H. A. Mailk, H. Li ,and G. Chen, “New design and stability analysis of fuzzy proportional—derivative control systems,” IEEE Trans. Fuzzy Syst., vol. 2, pp. 245-254, Nov. 1994.
37. R. Palm, “Scalng of fuzzy controller using the cross-correlation,” IEEE Trans. Fuzzy Syst., vol. 3, pp. 116-123, 1995.
38. H. X. Li and H. B. Gatland, “Conventional Fuzzy Control and its Enhance-ment,” IEEE Trans. Syst.,Man, Cybern., vol. 26, no. 5, pp. 791-797, 1996.
39. R. Mudi and N. R. Pal, “A note on Fuzzy PI-Type Controllers with Resetting Action ,” Fuzzy Sets Syst., Communication.
40. T. Brehm and K. S. Rattan, “Hybrid Fuzzy Logic PID Controller,” Proceedings of NAECON IEEE 1993, pp. 807 -813, 1993.
41. A. Ismail and E. Abu-Khousa, “Fuzzy TBT Control of Multi-Stage Flash Desalination Plants,” Proceedings of the 1996 IEEE International Conference on Control Application, pp. 241-246, 1996.
42. T. Brehm and K. S. Rattan, “Hybrid Fuzzy Logic PID Controller,” Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, pp. 1682-1687, 1994.
1. 蔣忠恕,外氣空調最佳化控制之研究,元智大學機械工程研究所,民國87年。
44. 卓明賢,圖形監控空調系統實驗室之設計與模糊控制器之研究,國立彰化師範大學工業教育研究所碩士論文,民國81年。
45. 黃浩榮,小型全水空調系統應用模糊控制達成舒適性與節能之研究,國立彰化師範大學工業教育研究所碩士論文,民國86年。
46. P. K. Patrick and R. Natallie, “Climatic Control of a Storage Chamber Using Fuzzy Logic,” IEEE, pp. 141-144, 1995.
47. 林彥正,冷房舒適度之自我適應控制,大同工學院機械工程研究所碩士論文,民國84年。
48. R. H. Lea, E. Dohmann, W. Prebilsky ,and Y. Jani, ”An HVAC Fuzzy Logic Zone Control System and Performance Results,” Proceedings of IEEE 5th International Fuzzy Systems, vol. 3, pp. 2175-2180, 1996.
49. M. Arima ,E. H. Hara ,and J. D. Katzberg, “A Fuzzy Logic and Rough Sets Controller for HVAC Systems,” IEEE WESCAN 95, vol. 1, pp. 133-138, 1995.
50. P. Salgado, J. B. Cunha, and C. Couto, “A computer-based Fuzzy temperature controller for environmental chambers,” ISIE 97 Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 1151-1156, 1997.
51. J. H. Holland, Adaptation in Natural and Aritificial System. Ann Arbor, MI: Univ. of Michigan Press, 1975.
1. 林信成、彭啟峰,Oh! Fuzzy 模糊理論剖析,第三波文化事業股份有限公司,民國83年8月。
53. D. E. Goldberg, Genetic Algorithm in Search, Optimization , and Machine Learning, Reading, MA: Addison-Wesley, 1989.
54. Leehter Yao, “Nonparametric Learning of Decision Regions via the Genetic Algorithm,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 26, no. 2, April 1996.
55. Jyh-Shing Roger Jang, “ANFIS:Adaptive-Network-Based Fuzzy Inference System,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-686, May/June 1993.
56. Chin-Teng Lin and C. S. George Lee, NEURAL FUZZY SYSTEMS, Prentice-Hall International, Inc.,1996.
57. Marco Russo, “FuGeNeSYs: Sw and Hw Implementation,” Proc. of 1st Interna-tional Conference and Knowledge-Based Intelligent electronic Systems(A delaide, Australia, 21-23, May,1997),pp. 209-218.
58. H. Ishibuchi, K. Nozaki, and N. Yamanoto, “Selecting Fuzzy Rules by Genetic Algorithm for Classification Problems,” Proc. of IEEE 2nd International Fuzzy systems Conference(San Francisco, CA, USA,28 March-1 April,1993), pp. 1119-1123.
59. Y. Shi, R. Eberhart, and Y. Chen. “Implementation of Evolutionary Fuzzy Systems,” IEEE Transactions on Fuzzy Systems, vol 7, April 1999.
60. W. R. Hwang and W. E. Thompson, “Design of Intelligent Fuzzy Logic Controllers Using Genetic Algorithms,” in Proc. IEEE Int. Conf. Fuzzy Syst., Orlando, FL, pp. 1383-1388 , June 1994.
61. H. Ishibuchi, K. Nozaki, and N. Yamamoto, and H. Tanaka, “Selecting Fuzzy if-then Rule for Classification Problems Using Genrtic Algoriyhms,” IEEE Trans. Fuzzy Syst., vol 3, pp. 260-270, Aug. 1995.
62. M. A. Lee and H. Takagi, “Dynamic Conrol of Genetic Algorithms Using Fuzzy Logic Techniques,” in Proc. Int. conf. Genetic Algorithms, Urbana-Champaign, IL, July 1993, pp. 76-83.
63. O. Cordon, F. Herrera, and M. Lozano, “On the Bidirectional integration of Fuzzy Logic and Genetic Algorithms,” in 2nd Online Workshop Evolutionary Computat. (WEC2), Nagoya, Japan, pp. 13-17, 1996.
64. K. Shimojima, T. Fukuda, and Y. Hasegawa, “RBF-Fuzzy System with GA Based Unsupervised/supervised Learning Method,” in Proc. Int Joint conf. 4th IEEE Int. conf. Fuzzy Syst./2nd Int. Fuzzy Eng. Symp.(FUZZ/IEEE-IFES),Yokohama, Japan, Mar. 1995, vol. 1, pp.253-258.
65. 孫方鐸,苑秀麟,基本熱力學,臺灣東華書局,1992。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林勝義,「社會福利機構的經營管理」,社會福利,第118期, 民國84年6月,頁39-42
2. 林千惠,「影響智能障礙者就業適應相關因素之探討」,社會福利,第135期, 民國87年4 月,頁46-54
3. 吳惠林,「應該的年代,不應該的作法」,美歐月刊,第11卷第4期,民國85年4月,頁4-14
4. 李宗派,「社會福利之基本認識」,社區發展季刊,第79期, 民國86年9月,頁171-180
5. 李美玉,「結合人民團體資源、參與社會福利服務」,社會福利,第125期, 民國85年8 月,頁15-16
6. 呂育一、徐木蘭,「非營利組織績效指標之研究 -- 以文教基金會為例」,臺大管理論叢,第5卷第1期,民國83年2月,頁165-188
7. 林萬億,「我國社會福利事業與研究的發展」,中國社會學刊,第15期,民國80年12月,頁74-119
8. 徐震,「社會福利的時代背景及其政策之形成」,社區發展季刊,第63期, 民國82年9月,頁49-54
9. 張英陣,「第三部門與社會福利政策分析」,社區發展季刊,第70期, 民國84年6月,頁144-159
10. 陳金貴,「美國非營利組織的研究」,美歐月刊,第11卷第6期,民國85年6月,100-119頁
11. 許博雄,「福利需求意識類型與意向模式: 以台北市的調查研究為例」,中國社會學刊,第18期, 民國84年12月,頁153-192
12. 許主峰,「非營利組織為何需要策略規劃」,合作發展,民國85年9月,頁11-14
13. 陶蕃瀛,「企業參與社會福利善盡社會責任之方式」,社會福利,第102期, 民國81年10月,頁15-17
14. 詹火生,「近五十年來臺灣地區的社會福利發展」,理論與政策,民國84年冬季號
15. 蔡啟源、陳秋蓉,「企業附設社會福利事業基金會之組織結構與組織績效之探討」,社區發展季刊,第70期, 民國84年6月,頁245-258