(3.237.97.64) 您好!臺灣時間:2021/03/03 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳景昇
研究生(外文):Ching-Sheng Chen
論文名稱:長寬比對矩形斷面高層建築氣彈力現象之風洞研究
論文名稱(外文):Effects of rectangular cross-section on high-rise building''s aeroelastic behavior
指導教授:鄭啟明鄭啟明引用關係
指導教授(外文):Chii-Ming Cheng
學位類別:碩士
校院名稱:淡江大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:141
中文關鍵詞:氣彈力矩形斷面風洞高層建築
外文關鍵詞:aeroelasticrectangular cross-sectionwind tunnelhigh-rise building
相關次數:
  • 被引用被引用:5
  • 點閱點閱:120
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在高層建築的風力工程結構設計上,常以結構位移反應為分析的依據,一般可分為順風向、橫風向及扭轉向位移反應。由於高層建築所受的風力具有強烈的散漫特性,因此,無法單純以靜力視之。高層建築受風力作用的位移計算中,除了順風向反應有大致可靠的預測模式外,橫風向與扭轉向反應由於影響的變數太多且氣動力行為複雜難以準確的掌握,所以無法提出可靠的數值預測結果,尤其在低Scruton No.的高層建築結構系統時,會因風力造成過大的位移反應,導致氣彈力不穩定現象,對結構產生極大的危害,因此,在低Scruton No.的結構系統進行氣彈力實驗是有其必要性。
本文主要是以順風向、橫風向及扭轉向三軸向之氣彈模型實驗,藉由不同長寬比、兩種流場(開闊地形、都市地形)及一系列的結構Scruton No.參數為控制變因,觀察其氣彈力模型在順風向和橫風向的位移反應,並作一般性的探討。
在結構Scruton No.參數較低(約為3)時,會有顯著的氣彈力現象,於開闊地形流場中,當斷面長寬比為方柱時,氣彈力實驗之橫風向擾動位移反應有最大的峰值產生,此顯示在開闊地形流場中,方柱的氣動力不穩定現象最為明顯;於都市地形流場中,則在斷面長寬比為0.4時,有最大的橫風向擾動位移產生。在結構Scruton No.參數較高(約為6)時,氣彈實驗位移反應和含氣動力阻尼的位移預測值彼此接近。整體而言,結構Scruton No.參數的增加有壓抑氣動力反應的現象。
Building’s motion in the alongwind, acrosswind and torsional direction are important on the design of high-rise building. The corresponding wind loads are of random nature, can not be taken as static loads. Excessive motion in the acrosswind direction can introduce extra motion-related-force and cause aerodynamic instability. For these cases, the aeroelastic experiment is important among all wind tunnel investigations. High-rise buildings with small Scruton No. exhibited stronger aerodynamic instability.
A triple-mode, two sway modes and one torsional mode, model was built to carry out the aeroelastic tests. The width-to-depth ratio, characteristics of flow field, and the Scruton No. (Scr) were chosen to be the experimental parameters. The building’s alongwind and acrosswind displacement were measured and compared with analytical predictions.
Experimental results show that, when Scruton No. is about 3, the square cross-section building exhibited noticeable aerodynamic instability in the open terrain flow field. In the city flow field, similar behavior was observed for buildings with width-to-depth ratio of 0.4. When the Scruton No. is close to 6, the aeroelastic experiment results agreed well to the analytical predictions which includes the aerodynamic damping effect. Increase of Scruton No. tends to cause aerodynamic stability on buildings.
第一章 緒論
1.1 前言1-1
1.2 研究內容 1-2
1.3 研究方法 1-2
1.4 論文架構 1-3
第二章 文獻回顧
2.1 結構振動 2-1
2.1.1 逼近流及尾跡對結構物造成之運動機制 2-2
2.1.2 順風向振動 2-3
2.1.3 橫風向振動 2-4
2.1.4 扭轉向振動 2-5
2.2 氣動力阻尼 2-6
2.3 風載重的相關性 2-8
第三章 理論背景
3.1 大氣邊界層 3-1
3.1.1 平均風速剖面3-1
3.1.2 紊流強度 3-3
3.1.3 紊流長度尺度 3-4
3.1.4 縱向擾動風速頻譜 3-5
3.1.5 縱向擾動風速交相關頻譜 3-6
3.2 結構動力特性及氣彈力實驗模擬 3-7
3.2.1 結構動力學理論 3-7
3.2.2 氣彈力實驗模擬 3-11
3.3 風場與結構之關係 3-13
3.3.1 氣流流經鈍體後之行為 3-13
3.3.2 風力作用下的位移反應計算 3-17
3.4 散漫數據分析 3-25
3.5 氣動力係數法之位移反應預測 3-27
第四章 實驗配置、量測與數據分析
4.1 實驗配置、量測與數據分析 4-1
4.1.1 流場配置 4-1
4.1.2 風速量測與設置 4-3
4.1.3 尾跡之量測與設置 4-4
4.2 氣彈力模型之模擬、率定及量測及數據採樣、分析 4-5
4.2.1 氣彈模型之設計 4-6
4.2.2 結構頂點位移率定及結構動力特徵率定 4-10
4.2.3 結構位移之量測 4-12
4.3 數據採樣技術 4-13
4.4 數據分析方法與其精確度 4-14
第五章實驗結果與討論
5.1 前人實驗所得之風力頻譜特性及經風力頻譜計算之橫風向位移反應 5-1
5.1.1 氣彈模型之設計 5-3
5.1.2 經風力頻譜計算之橫風向位移反應 5-4
5.2 前人實驗所得之氣動力阻尼係數及經氣動力阻尼力計算橫風向位移反應 5-5
5.2.1 氣動力阻尼係數 5-5
5.2.2 經氣動力阻尼力計算橫風向位移反應 5-9
5.3 本文氣彈實驗及結構位移的綜合分析 5-17
5.3.1 實驗之結構參數對氣彈力現象的影響 5-17
5.3.2 順風向位移 5-19
5.3.3 橫風向位移 5-20
5.4 結構振動對尾跡渦流的影響 5-30
第六章結論與建議
6.1 結論 6-1
6.1.1 經風力頻譜計算之橫風向位移預測結論 6-1
6.1.2 經氣動力阻尼力計算橫風向位移預測結論 6-1
6.1.3 氣彈力實驗所得的位移反應結論 6-2
6.1.4 氣動力阻尼預測值和氣彈力實驗值的比較結論 6-3
6.1.5 結構振動對尾跡渦流的影響結論 6-3
6.2 建議 6-4
參考文獻R-1~R-4
附表 E-1~E-2
附圖(一)F-1~F-11
附圖(二)G-1~G-38
[1]. Ahsan Kareem, "Dynamic Response of High-rise Buildings to StochasticWind Loads", J. of Wind Engineering and Industrial Aerodynamics, Vol.41-44 (1992), p1101-1112.
[2]. Balendra, T. and Nathan, G.K., "Longituradinal, Laterla and Torsional Oscillations of a Square Section Tower Model in an Atmospheric Boundary Layer", Eng. Struct. , Vol.9 (1987), p218-224.
[3]. Zhang, W.J., Xu, Y.L. and Kwok, K.C.S., "Torsional Vibration and Stability of Wind-excited Tall Buildings with Eccentricity", J. of Wind Engineering and Industrial Aerodynamics, Vol.50 (1993), p299-308.
[4]. Davenport, A.G., Novak, M., "Part 2:Vibration of Structures Induced by Wind", Shock and Vibration Handbook, McGraw Hill (1976), p21-43.
[5]. Kawai, H., "Bending and Torsional Vibration of Tall Buildings in Strong Wind", J. of Wind Engineering and Industrial Aerodynamics, Vol.50 (1993), p281-288.
[6]. Kawai, H., "Vortex Induced Vibration of Tall Buildings", J. of Wind Engineering and Industrial Aerodynamics, 41-44 (1992), p117-128.
[7]. Davenport, A.G., "Gust Loading Factors", J. of Structural Division, ASCE, Vol.93, No.ST3, June 1967, p11-34.
[8]. Vickery, B.J., "On the Reliability of Gust Loading Factors", Proc. Technical Meeting Concerning Wind Load on Buildings Science Series 30, Washington, D.C., (1970).
[9]. Vellozzi, J. and Cohen, E, "Gust Response Factors", J. of Structural Division, ASCE, Vol.97, No.ST6, June 1968, p1295-1313.
[10]. Simiu, E., "Equivalent Static Wind Loads for Tall Buildings Design", J. of Structural Division, ASCE, Vol.102, No.ST4, April 1976, p719-737.
[11]. Simiu, E., "Revised Procedure for Estimating Alongwind Response", J. of Structural Division, ASCE, Vol.106, No.ST1, January 1980, p1-10.
[12]. Takeo Matsumoto, "On the Across-wind Oscillation of Tall Buildings", J. of Wind Engineering and Industrial Aerodynamics, Vol.24 (1986), p69-85.
[13]. Kwok, K.C.S. and Melbourne, W.H., "Wind-induced Lock-in Excitation of Tall Structures", Journal of the Structural Division, Vol.107 (1981), No.ST1, p57-72.
[14]. N.Isyumov and M.Poole, "Wind Induced Torque on Square and Rectangular Building Shapes", J. of Wind Engineering and Industrial Aerodynamics, (1983), p183-196.
[15]. Hidetoshi Hayashida, Yoshihiro Mataki, and Yoshiteru Iwasa, "Aerodynamic Damping Effects of Tall Building for a Vortex Induced Vibration", J. of Wind Engineering and Industrial Aerodynamics, Vol.41-44 (1992), p1973-1983.
[16]. Vickery, B.J. and Steckley, A., "Aerodynamic Damping and Vortex Excitation on an Oscillating Prism in Turbulent Shear Flow", J. of Wind Engineering and Industrial Aerodynamics, Vol.49 (1993), p121-140.
[17]. Kareem, A., "Lateral-Torsional Motion of Tall Building to Wind Loads", J. of Struct. Engi. , Vol.111, No.11, Nov. (1985).
[18]. H.Marukawa, N.Kato, K.Fujii and Y.Tamura, "Experimental Evaluation of Aerodynamic Damping of Tall Buildings", J. of Wind Engineering and Industrial Aerodynamics, Vol.59 (1996), p177-190.
[19]. 鄭啟明, 盧博堅, 蔡明樹, "正方斷面高層建築的橫風向氣彈力行為", 中華民國第三屆結構工程研討會, (1996), p1263-1272.
[20]. Thoroddsen, S.T., Peterka, J.A. and Cermak, J.E., "Correlation of Companents of Wind-loading on Tall Buildings", J. of Wind Engi. Ind. Aerodyn. ,Vol.28 (1988), p351-360.
[21]. Tallin, A. and Ellingwood, B. "Wind Induced Lateral-torsional Motion of Building", J. of Struct. Engi. , ASCE, Vol.111, No.10, Oct. (1985), p2197-2213.
[22]. 鄭啟明, 盧博堅, 傅仲麟, "三維矩斷面柱体所受之扭轉向風力特性", 大陸第五屆全國風工程及工業空氣動力學學術會議論文集, (1998), pI-15~I-20.
[23]. Davenport, A.G., "The Relationship of Wind Structure to Wind Loading", Proc. Symp. on Wind Effects on Buildings and Structures, Vol.1, National Physical Labortory, Teddington, U.K. Her Majesty''s Stationary Office, London, (1956), p53-102.
[24]. American National Standard A58.1-1982 Minimum American National Standard Institute, Inc., New York.
[25]. Counihan, J., "Adiabatic Atmospheric Boundary Layer:a Review and Analysis of Data From the Period 1880-1972", Atmos. Environ., 9 (1975), p871-905.
[26]. Davenport, A.G., "The Spectrum of Horizontal Gustiness Near the Ground in High Winds", J. Royal Meteorol. Soc., 87 (1961), p194-211.
[27]. Kaimal, J.C. et al., "Spectral Characteristic of Surface -layer Turbulence", J. Royal Meteorol. Soc., 98, (1972), p563-589.
[28]. Davenport, A.G., "The Dependence of Wind Load upon Meteorological Parameters", in Proceedings of the International Research Seminar on Wind Effects on Buildings and Structures, University of Toronto Press. Toronto, (1968), p19-82.
[29]. Whitbread, R.E., "Model Simulation of Wind Effects on Structures", Proceeding of the Conference on Wind Effects on Buildings and Structures (1963), p284-306.
[30]. Emil Simiu, Robert H. and Scanlan, P.E., "Wind Effects on Structures", p214.
[31]. Kareem, A., "Wind Excited Response of Buildings in Higher Modes", J. Struct. Div., ASCE, Vol.107, NO.ST4, April (1981), p701-706.
[32]. Davenport, A.G., Inst. Civil Eng. Paper No.6480,August (1961), p449-472.
[33]. 陳若華,"結構振動與流場互制現象之風洞實驗研究",淡江大學水資源及環境工程研究所博士論文,(1996).
[34]. Simiu, E. and Scanlan, R.H., "Wind Effect on Structures", Wiley-Interscience, John Wiley & Sons, 2nd edition, (1986).
[35]. Irwin, H.P.A.H., "The Design of Spire for Wind Simulation", J. of Wind Engineering and Industrial Aerodynamics, Vol.7 (1981), p361-366.
[36]. 簫葆羲, "應用數位型電腦線上控制及處理分析熱絲及熱膜量測紊流之研究",中央研究院物理所.
[37]. 簫葆羲, "熱流速儀與數位訊號處理在紊流量測上之應用",中央研究院物理所.
[38]. Bedat, J.S. and Piersol, A.G., "Random Data Analysis and Measurement Procedures", John Wiley & Sonc Inc. , New York.
[39]. Isyumov, N., Fediw, A.A., Colaco, J. and Banavalkar, P.V., "Performance of a Tall Building Under Wind Action", J. of Wind Engineering and Industrial Aerodynamics, Vol.41-44 (1992), p1053-1064.
[40]. Kareem, A. and Gurley, K., "Damping in Structures: Its Evalution and Treatment of Uncertainly", J. of Wind Engineering and Industrial Aerodynamics, Vol.59 (1996), p131-157.
[41]. 廖甫斌, "橫風向振動對三維矩柱體所受風力特性的影響",淡江大學土木工程研究所碩士論文,(1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔