跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 00:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭品恭
研究生(外文):Piin-Kung Jeng
論文名稱:新式機場剛性鋪面厚度設計法之建立
論文名稱(外文):Development of New Thickness Design Procedures for Rigid Airfield Pavements
指導教授:李英豪李英豪引用關係
指導教授(外文):Ying-Haur Lee
學位類別:碩士
校院名稱:淡江大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:95
中文關鍵詞:版理論多層線性彈性理論機場剛性鋪面厚度設計通過涵蓋率比值應力預估模式疲勞損壞
外文關鍵詞:Plate TheoryMulti-layered Linear Elastic TheoryRigid Airfield PavementsThickness DesignPass to Coverages RatioPrediction ModelsFatigue Damage
相關次數:
  • 被引用被引用:2
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
FAA在1995年7月出版之機場鋪面設計與評估手冊(AC 150/5320-6D)係以「版理論」為基礎;但針對新一代B-777型飛機之特殊輪軸型態(雙輪三軸),FAA在目前最新的設計手冊(AC 150/5320-16)中,乃以全新之設計理念,無論是剛性或柔性機場鋪面均採用「多層線性彈性理論」,並提供LEDFAA電腦程式以專供設計可容納B-777型飛機之鋪面厚度。但同時以「版理論」為基礎的設計手冊(AC 150/5320-6D)亦適用於其他不容納B-777型飛機之鋪面厚度設計。然而此項措施不僅在學術界甚至在工程界之實際應用上亦造成了極大的爭議與困擾。
本研究主要目的以版理論為基礎建立可容納B-777型飛機之機場剛性鋪面厚度設計法。本研究首先重新評估通過涵蓋率比值(Pass to Coverages Ratio)的發展觀念與計算方式,並重新計算各機型的通過涵蓋率比值。接著,利用應力預估模式,重新計算設計法中的臨界邊緣應力並與舊法所計算的臨界應力相互驗證。本研究並利用累積疲勞損壞因子的概念,以解決傳統方法中對不同機型與起飛次數轉換的問題與困難。研究中亦比較傳統FAA與LEDFAA的疲勞損壞曲線之關係,並利用當量應力因子的觀念,建立新的疲勞損壞曲線。
本研究結果可改進與修正FAA現階段機場剛性鋪面厚度設計法的缺點與設計流程中的不當假設,進而研擬出新的機場剛性鋪面厚度設計程序,並利用Visual Basic 5.0應用軟體編譯一套擁有良好使用介面之機場剛性鋪面厚度設計程式TKUAPAV。

The conventional Federal Aviation Administration's (AC 150/5320-6D) thickness design methodology for rigid airfield pavements was based on “the plate theory”. Recently, FAA has issued a new Advisory Circular which entirely utilized “the multi-layered linear elastic theory” for the design of both flexible and rigid airfield pavements to accommodate the new-coming Boeing 777 airplanes (AC 150/5320-16). Computerized design procedures are coded in the LEDFAA program. Nevertheless, the applicability of layered elastic theory in concrete pavement design has always been questioned and debated over the decades, which also warrants a need for further investigations.
The main objective of this study is to develop new thickness design procedures for rigid airfield pavements in attempts to accommodate the Boeing 777 airplanes based on the plate theory approach. The original concept of pass to coverages ratio is reevaluated. The prediction models developed by Lee, et al. (1997) are utilized for the estimation of critical edge stress. The problems and difficulties of the conventional method especially in the conversions of different aircraft types are identified. The concept of cumulative fatigue damage factor is used to account for the combined damages of different aircraft types and departures. Structure deterioration relationships are compared and tentative modification alternatives are investigated. Consequently, an equivalent stress factor is introduced and an alternative structural deterioration model is proposed. The proposed approach is implemented in a user-friendly computer program (TKUAPAV) for practical trial applications.

第一章 緒 論1
1-1 研究緣起1
1-2 研究目的1
1-3 研究範圍與內容3
1-4 研究方法3
1-5 研究流程4
第二章 文獻回顧6
2-1 傳統FAA剛性鋪面厚度設計法6
2-1-1 傳統FAA剛性鋪面厚度設計理念6
2-1-2 決定混凝土版厚度6
2-1-3 實例計算9
2-2 LEDFAA剛性鋪面厚度設計法10
2-2-1 LEDFAA剛性鋪面厚度設計理念與設計流程10
2-2-2 實例計算11
2-3 PCA機場鋪面厚度設計法13
2-3-1 PCA機場剛性鋪面厚度設計理念13
2-3-2 PCA機場剛性鋪面厚度設計流程13
2-3-3 實例計算14
2-4 機場鋪面強度報告ACN-PCN法15
2-4-1 ACN-PCN發展背景15
2-4-2 ACN值的決定15
2-4-3 PCN值的決定16
2-5 剛性鋪面應力計算18
2-5-1 剛性鋪面應力之理論公式18
2-5-2 Pickett and Ray的影響圖20
2-5-3 有限元素法21
2-5-4 無因次之應力預估模式21
第三章 FAA剛性鋪面厚度設計法之探討與驗證31
3-1 FAA剛性鋪面厚度設計法發展背景31
3-2 飛機重複荷重次數31
3-2-1 通過涵蓋率比值(P/C;Pass to Coverages Ratio)的發展概念31
3-2-2 實例計算與驗證34
3-3 傳統FAA剛性鋪面厚度設計法原始發展理論根據35
3-3-1 傳統FAA剛性鋪面的疲勞損壞準則35
3-3-2 混凝土厚度設計與涵蓋率的關係36
3-3-3 傳統FAA決定混凝土版厚度之程序37
3-3-4 混合機型對鋪面的累積損壞影響38
3-4 LEDFAA剛性鋪面厚度設計法原始發展理論根據39
3-4-1 LEDFAA剛性鋪面疲勞損壞準則39
3-4-2 LEDFAA剛性鋪面厚度設計流程40
3-4-3 重新評估雙輪三軸之臨界應力42
3-5 GUCBILMEZ & YUCE疲勞損壞準則42
3-6 結論44
第四章 新式機場剛性鋪面厚度設計法之建立59
4-1 建立新式機場剛性鋪面厚度設計法研究流程59
4-2 評估臨界邊緣應力計算方式60
4-2-1 傳統FAA剛性鋪面邊緣應力計算方式60
4-2-2 邊緣應力預估模式61
4-2-3 影響圖與應力預估模式之邊緣應力計算比較61
4-3 不同機型與交通量對鋪面累積損壞影響62
4-4 重新評估通過涵蓋率比值63
4-4-1 通過涵蓋率比值之基本假設63
4-4-2 當量應力因子f364
4-4-3 當量應力因子f3敏感度分析65
4-5 發展新的疲勞損壞關係模式65
4-6 建立新式機場剛性鋪面厚度設計法66
4-7 結論67
第五章 TKUAPAV程式建立77
5-1 VISUAL BASIC 5.0應用軟體程式77
5-2 TKUAPAV程式與實例計算78
5-2-1 TKUAPAV程式構建78
5-2-2 實例計算79
5-2-2-1 比較傳統FAA與新式機場剛性鋪面厚度設計法79
5-2-2-2 容納B-777型飛機之新式機場剛性鋪面厚度設計法83
5-2-2-3 實例分析結果84
5-3 結論85
第六章 結論與建議89
6-1 結論89
6-2 建議91
參考文獻92

圖目錄
圖1-1 研究流程圖5
圖2-1 雙輪形式飛機之FAA剛性鋪面厚度設計曲線圖23
圖2-2 傳統FAA利用設計曲線決定剛性鋪面厚度之流程24
圖2-3 單輪與雙輪切於版邊緣之排列方式25
圖2-4 雙輪雙軸切於版邊緣之排列方式25
圖2-5 DC-10-10之PCA設計曲線圖26
圖2-6 計算中央應力影響圖27
圖2-7 計算邊緣應力影響圖28
圖3-1 理論交通常態分配曲線46
圖3-2 標準常態分配曲線46
圖3-3 一般常態分配曲線47
圖3-4 無疊加效應單軸雙輪飛機之一般常態分配曲線47
圖3-5 疊加效應單軸雙輪飛機之一般常態分配曲線48
圖3-6 波音747荷重輪軸排列形式48
圖3-7 波音747荷重輪常態分配曲線49
圖3-8 疲勞損壞準則-設計因子DF與涵蓋率Coverages的關係49
圖3-9 涵蓋率Coverages與厚度百分比的關係50
圖3-10 混凝土版厚度設計流程51
圖3-11 機場剛性鋪面結構績效模式52
圖4-1 應力預估模式驗證69
圖4-2 雙輪三軸應力預估模式驗證69
圖4-3 比較各個疲勞損壞準則70
圖4-4 輪中心線側移位置分佈70
圖4-5 建立新式機場剛性鋪面厚度設計法流程71
圖4-6 f3與輪胎寬度內分隔區間n之關係72
圖5-1 TKUAPAV程式主畫面86
圖5-2 檔案選項86
圖5-3 應力分析選項87
圖5-4 FAA選項87
圖5-5 TKUAPAV選項88
表目錄
表2-1 傳統FAA輪軸轉換因子29
表2-2 安全因子範圍29
表2-3 路基強度分類29
表2-4 允許胎壓分類30
表3-1 計算通過涵蓋率比值之S-PLUS函數53
表3-2 各式機型之基本資料表54
表3-3 驗證通過涵蓋率比值56
表3-4 R805FAA程式所需輸入值57
表3-5 波音B-777型飛機邊緣應力與中央應力比較58
表4-1 H51程式輸入檔範例72
表4-2 重新分析美國陸軍工兵團現地試驗資料73
表4-3 當量應力調整因子f3敏感度分析74
表4-4 結構損壞關係式76

1. 李英豪、李英明、陳建桓,「運用因次分析的方法對混凝土鋪面角隅應力之理論評估」,專題研究計畫編號NSC83-0410-E032-009, NSC84-2211-E032-022,行政院國家科學委員會,中華民國八十四年七月。
2. 李英豪、李英明,「建立新的接縫式混凝土鋪面應力分析與厚度設計方法」(一),國科會計畫編號NSC84-2211-E032-008(第一期),中華民國八十四年七月。
3. 李英豪、李英明、顏少棠、白建華、李朝聰,「建立新的接縫式混凝土鋪面應力分析與厚度設計方法」(二),期末報告,國科會計畫編號NSC85-2211-E-032-010(第二期),中華民國八十五年七月。
4. 李英豪、顏少棠、鄭品恭,「機場剛性鋪面厚度設計程式之建立」,期末報告,國科會計畫編號NSC87-2218-E-032-007,中華民國八十七年七月。
5. 顏月珠,「統計學」,三民書局,1991。
6. 王國榮,「VB5與資料庫程式設計」,旗標出版股份有限公司,1997。
7. Federal Aviation Administration, Airport Pavement Design and Evaluation, Advisory Circular, AC 150/5320-6D, 1995.
8. Federal Aviation Administration, Airport Pavement Design for the Boeing 777 Airplane, Advisory Circular, AC 150/5320-16, 1995.
9. HoSang, V. A., Field Survey and Analysis of Aircraft Distribution on Airport Pavements. Report No. FAA-RD-74-36, Government Document No. TD 4.509:74-36, 1975.
10. R. G. Ahlvin, et al., Multiple-Wheel Heavy Gear Load Pavement Tests, AFWL-TR-70-113, Vol. I-IV, Air Force Weapons Laboratory, Kirtland AFB, New Mexico, 1971.
11. R. G. Ahlvin, Origin of Developments for Structural Design of Pavements, Report No. GL-91-26, US Army Corps of Engineers, 1991.
12. R. G. Ahlvin, and J. W. Hall, Reanalysis of Multiple-Wheel Landing Gear Traffic Tests, U.S. Army Engineer Waterways Experiment Station, 1992.
13. Robert G. Packard, Fatigue Concepts for Concrete Airport Pavement Design, Transportation Engineering Journal, ASCE Vol. 100, No. TE3, August 1974, pages 567-582.
14. Robert G. Packard, Design of Concrete Airport Pavement, Portland Cement Association, 1973.
15. Federal Aviation Administration, Standardized Method of Reporting Airport Pavement Strength PCN, Advisory Circular, AC 150/5335-5, dated June, 1983 and Change 1, dated March , 1987.
16. Rollings, R.S., and M. W. Witczak, Structural Deterioration Model for Rigid Airfield Pavements, Journal of Transportation Engineering, ASCE, Vol. 116, No. 4, 1990, pages 479-491.
17. Gucbilmez E., and R. Yuce, Mechanistic Evaluation of Rigid Airfield Pavements, Journal of Transportation Engineering, ASCE, Vol. 121, No. 6, 1995, pages 468-475.
18. C. D. Burns, C. L. Rone, W. N. Brabston, H. H. Ulery, Jr., Comparative Performance of Structural Layers in Pavement System, Report No. FAA-RD-73-198, Vol. I-II, U.S. Army Engineer Waterways Experiment Station, June, 1974.
19. Frazier Parker, Jr., W. R. Barker, R. C. Gunkel, and E. C. Odom, Development of a Structural Design Procedure for Rigid Airport Pavements, Report No. FAA-RD-77-81, WES-TR-GL-79-4, Government Document No. TD 4.509:77-81, April, 1979.
20. D. M. Burmister, The Theory of Stresses and Displacements in Layered Systems and Applications to the Design of Airport, Proceedings, Highway Research Board, Vol. 23, 1943, pages 126-144.
21. Chen, D. H., M. Zaman, J. Laguros, and A. Soltani, Assessment of Computer Programs for Analysis of Flexible Pavement Structure, Transportation Research Record 1482, TRB, National Research Council, Washington, D.C., 1995, pages 123-133.
22. Miner, M. A., Cumulative Damage in Fatigue, Transportations, American Society of Mechanical Engineers, Vol. 67, 1945, pages A159-A164.
23. Huang, Y. H., Pavement Analysis and Design, Prentice-Hall, Inc., New Jersey, 1993.
24. M. Y. Shahin, Pavement Management for Airports, Roads, and Parking Lots, Chapman & Hall, New York, 1994.
25. Ioannides, A. M., Analysis of Slabs-on-Grade for a Variety of Loading and Support Conditions, Ph. D. Thesis, University of Illinois, Urbana, 1984.
26. Korovesis, G. T., Analysis of Slab-on-Grade Pavement Systems Subjected to Wheel and Temperature Loadings, Ph. D. Thesis, University of Illinois, 1990.
27. Kuo, C. M., K. T. Hall, and M. I. Darter, Three-Dimensional Finite Element Model for Analysis of concrete Pavement Support, Transportation Research Record 1505, TRB, National Research Council, Washington, D.C., 1995, pages 119-127.
28. Y. H. Lee, Development of Pavement Prediction Models, Ph. D. Thesis, University of Illinois, Urbana, 1993.
29. Y. H. Lee, and M. I. Darter, Loading and Curling Stress Models for Concrete Pavement Design, Transportation Research Record 1449, Transportation Research Board, National Research Council, Washington, D. C., 1994, pages 101-113.
30. Y. H. Lee, S. T. Yen, C. T. Lee, J. H. Bair, and Y. M. Lee, Development of New Stress Analysis and Thickness Design Procedures for Jointed Concrete Pavements, Proceedings, Sixth International Purdue Conference on Concrete Pavement — Design and Materials for High Performance, Purdue University, 1997.
31. Y. H. Lee, J. H. Bair, C. T. Lee, S. T. Yen, and Y. M. Lee, Modified Portland Cement Association Stress Analysis and Thickness Design Procedures. Transportation Research Record 1568, TRB, National Research Council, Washington, D. C., 1997, pp. 77-88.
32. MathSoft, S-PLUS User's Guide. Version 4.0, Seattle, Washington, Inc., 1997.
33. Portland Cement Association, The Design for Concrete Highway and Street Pavements, PCA, Skokie, Illinois, 1984.
34. Westergaard, H. M., Stresses in Concrete Runways in Airports, Proceedings, Highway Research Board, Vol. 19, 1926, pages 192-202.
35. Y. H. Lee, S. T. Yen, P. K. Cheng, Reevaluation of the FAA Thickness Design Procedures for Rigid Airfield Pavements, 4th International Workshop on Design Theories and Their Verification of Concrete Slabs for Pavements and Railroads, Buccaco, Portugal, September, 1998.
36. Federal Aviation Administration, Airport Pavement Design and Evaluation, Advisory Circular, AC 150/5320-6C, 1978.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top